

Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences

Information about field tests with mobile laser scanning

Johan Holmgren, Remote sensing laboratory, SLU Seminar Ljungbergslaboratoriet 17 November 2016

Joint work together with FOI and Skogforsk

Tested mobile laser scanning system

- ZEB1 with 3D SLAM
- Velodyne VLP 16 with stereo video cameras and 3D SLAM
- Leica Geosystems Pegasus Backpack with 3D SLAM

SLAM = Simultaneously Location And Mapping Pegasus system not presented in this seminar

Laser scanner Velodyne VLP 16

- 300 000 measurements / second
- Scanning 360 degrees horizontal
- Scanning ± 15 degrees vertical
- Scanning of 16 planes simultaneously
- 10 revolutions / second

Visual SLAM using image matching of stereo video data, FOI

3D SLAM using laser data, one example

Aligning 3 D data, e.g., from time t₀ and t₁

How to find correspondence ?

- 1. Manual interpretation, automatic feature detection, or
- 2. Assume that closest points correspond and iterate (ICP)

Iterative closest point algorithm (ICP)

- 1. Find correspondence (pair-wise registration)
- 2. Find the function that minimize distance between points from each dataset
- 3. Calculate new point data (x, y, z) with the function (rotation, translation)
- 3. Repeat 1 3 until the error is low or maximum of iterations is reached

Converge if starting points are "close enough"

Point-to-plane instead of point-to-point ICP

Make it possible for flat regions to slide along each other

Iteration k = 1, Error = 0.47 m

Iteration k = 2, Error = 0.42 m

Iteration k = 4, Error = 0.15 m

Iteration k = 5, Error = 0.12 m

Iteration k = 10, Error = 0.03 m

Iteration k = 12, Error = 0.016 m

Iteration k = 13, Error = 0.012 m

Iteration k = 14, Error = 0.009 m

Iteration k = 15, Error = 0.007 m

Questions?

Presented work based on collaboration between Forest remote sensing section, SLU, Umeå (www.slu/srh) Electro-optical Systems, FOI Skogforsk Uppsala