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Abstract

Species composition is one of the most important factors in forest inven-
tory. Species is an extrinsic property of an individual tree. Therefore, a feasi-
ble remote-sensing approach to estimate the species composition of a forest
population is to classify individual tree-crowns. On the single-tree level, the
problem of tree-crown classification from aerial imagery has been studied
since the beginning of the nineties. However, species classification remains a
bottleneck in remote-sensing-based forest inventory.

Many of the studies in tree-crown classification deals with multispectral
features, i.e. measures of intensity in different spectral bands (e.g. colours).
Such features suffers drawbacks of being sensitive to factors such as view-
ing geometry, sun angle, time of day, and time of year. Another possible
approach is to base tree-crown classification on spatial features (Brandtberg,
2002; Erikson, 2004), that measures local changes in pixel intensity.

This primary objective of this study is to evaluate a large set of spatial fea-
tures and to compare these with some multispectral features, for the problem
of discriminating the tree species spruce, pine, and birch. In total 366 features
were evaluated on a dataset of 875 trees from a boreal forest in southern Swe-
den.

The spatial features are derived by techniques of image morphology, im-
age gradients, and from textural measures based on second-order statistics.
Specifically, the textural measures are based on the Gray-level co-occurrence
matrix (GLCM) and on Haar wavelets. For the Support Vector Machine
(SVM) classifier the relative importance of each feature was established by
an SVM-based feature ranking algorithm proposed in Guyon et al.| (2002).
In order to investigate what spectral information is necessary, the classifica-
tion for the best features was measured in the respective subsets; all features,
spectral features, spatial features, and spatial features in a single colour chan-
nel.



The results demonstrates that the most powerful features were either
based on the GLCM, or on Haar wavelets, possibly because those features
analyses the tree-crown imagery at multiple scales. Another result was that
excluding spectral features did not cause a substantial drop in classifica-
tion accuracy if sufficiently many best-features were used. For smaller best-
feature sets, the spectral features can be replaced by spatial features if the
total number of best-features is increased. However, the spectral informa-
tion from utilizing multiple spectral bands was found to be necessary even
for spatial features. That is, the classification accuracy from limiting spatial
features to a single colour channel was impaired substantially, compared to
when all three CIR channels was utilized. The compound classification ac-
curacy is measured to 76%, a figure that is comparable to other studies using
spatial features for tree-crown classification.

The study shows that spatial features are powerful for imagery-based
tree-crown classification at 3 cm resolution.
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1 Introduction

1.1 Background

Forest inventory is the process of estimating properties of total forest populations (West
and West, 2009). In particular, timber volume and species composition are two of the
most important forest parameters (Walter, |1998)). What method of forest inventory that is
suitable is determined by factors such as: the delineation of the population, the definition
of individuals in the population, what properties are to be measured, and what method of
analysis that is usecﬂ (West and West, 2009). Manual measurements are however cumber-
some. Even for small forests it becomes intractable to extract whatever information the
owner wants to know about the population, by manually measuring every tree (West and
West, 2009, p. 91). Manual small scale forest inventory is therefore primarily concerned
with measuring tree properties of samples of the population. The samples are often a set of
trees within predetermined area plots called stands. The measurements of the stands can
then be generalized to the entire population, using statistics and sampling theory (West
and West, 2009, p. 91).

Large-scale forest inventory requires remote sensing techniques, in order to cover
large areas at a relatively low cost (compared to manual ground measurements) (Shao and
Reynolds, 2006, p. 4). Forest remote sensing is an umbrella term for analysis- and data
acquisition- techniques from aerial surveys (Walter, [1998). Two major data acquisition
methods of today are aerial imagery and airborne laser scanning (ALS) (Nordkvist and
Olsson, 2013). The Area based method (introduced in Scandinavia 2002) is a major
methodology for conducting forest inventory based on remote sensing. In the area based
method, the whole population is surveyed (usually by ALS). The measurements of the
survey is calibrated to manual ground measurements. Parameters of interest are then
estimated using different methods of analysis. The Area based method mainly estimates
parameters related to tree size. However, a particularly important property that is not
estimated by the Area based method is species composition (Nordkvist and Olsson, 2013).
In fact, to this day, no published results has produced a classification accuracy that is
suitable for operational use (Nordkvist and Olsson, [2013)). Species classification remains
a bottleneck in forest inventory based on remote sensing (Korpela et al., 2010).

'In this article it is natural to think of the trees as individuals, and the evaluated stands as constituting
the population.



1.2 Related work

Operational methods for forest inventory, based on remote sensing (e.g. the area based
method), mainly estimates forest parameters on the stand level (for groups of trees). How-
ever, certain important forest parameters are extrinsic to individual trees and therefore
cannot be directly measured on the stand level. One particular such parameter is species.
Given remote sensing data of sufficient detail, the analysis can be conducted on a single-
tree level (Nordkvist and Olsson, 2013). This sub-field of forest remote sensing that
models individual trees is called Single tree remote sensing (STRS).

An important sub-problem that arises in STRS is individual tree crown delineatiorﬂ
ALS data has proven valuable for automatically delineating individual tree crowns (see
e.g. Persson et al.2002). For a comparison of different ALS based tree crown delineation
techniques, see Kaartinen et al.| (2012); Vauhkonen et al.|(2011). It is also possible to use
aerial 2D imagery for tree crown delineation. However, image based delineation algo-
rithms in general suffers from commission errors. The reason of the commission errors is
that in open areas, structures in the lower forest floor, such as shrubs or clumped vegeta-
tion, are mistaken for trees. If however height information is available, these commission
errors can be removed (Leckie et al., 2003a). A review of 2D imagery based automatic
tree crown delineation is found in |Brandtberg and Warner| (2006). Aerial imagery is not
necessarily limited to 2D information though. It is possible to construct a digital canopy
model (DCM) of canopy elevation, using photogrammetry on overlapping aerial images
(Nordkvist and Olsson, 2013). To obtain a DCM from ALS data is straightforward, be-
cause laser scans produces 3D information directly. DCMs has shown especially useful
for automatic tree crown delineation (Nordkvist and Olsson, [2013)).

The STRS community today regards aerial imagery mainly as a complement to ALS.
In particular, this is the case for species classification (Leckie et al., 2003aj; Packalén et al.,
2009). The advantage of ALS stems from its ability to capture structural information, be-
cause it produces highly detailed 3D point clouds of the scanned environment. A specially
important property of ALS is that individual rays passes through the forest canopy, cap-
turing the ground and the internal structure of the trees (in contrast to photogrammetry
that only captures the uppermost surface of the forest canopy) (Nordkvist and Olsson,
2013). The benefit of 2D imagery, on the other hand, is its ability to capture multispectral
information and spatial details useful for species and health assessments (Leckie et al.,
2003a;; | Brandtberg and Warner, |2000).

Even though research efforts in species classification based on ALS alone, demon-
strates the usefulness of ALS data in species classiﬁcatiorﬂ (e.g. Brandtberg et al., [2003;
Brandtberg, 2007; Arka et al., 2007, 2009; |Li et al., 2010; [Korpela et al., 2010), the ben-
efit of including aerial imagery must not be disregarded. That is, because aerial imagery

2 A note on terminology. Tree-crown delineation is the accepted term in STRS literature, for determining
which pixels/points belong to respective tree-crowns. However, in image processing, image analysis, and
computer vision in general, the corresponding term is tree-crown segmentation (Gonzalezl 2008, chapter
10).

31t is important to note that the features used in ALS based species classification are note exclusively
structural (i.e. derived from the geometry of the 3D point cloud), but also based on properties of the laser
echoes, e.g. the mean and standard deviation of echo intensities (@rka et al.,2007).
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in addition to ALS contributes to classification accuracy by a significant amount (Pack-
alén et al., 2009). Examples of laser-imagery hybrid systems for individual tree species
classification are found in [Holmgren et al.| (2008) and Ke et al. (2010}, both which con-
cludes that the synthesized data yields better classification accuracy than to use only laser
features, or only image features. In their analysis, |Holmgren et al.| (2008) includes the
classification accuracies from the respective feature sets used separately. Interestingly,
the resulting classification accuracies are comparable. However, the performance of the
image feature, specifically the mean pixel intensity per colour band of the tree crown, was
found to vary by a significant amount between different seasons.

On the single-tree level, species classification based on aerial imagery have a longer
history than methods based on ALS. Early work in species classification from aerial im-
agery is found in (Gougeon et al.| (1989); |[Pinz and Bischof| (1990); Pinz et al.| (1993). In
general, aerial imagery data can be separated into three categories of data; multispectral,
multitemporal, and spatial (Key et al., 2001)). Multispectral information correspond to
the number of spectral bands used (e.g. colours). Multitemporal information correspond
to the number of dates (time points) the the scene has been photographed. Spatial infor-
mation correspond to local changes in pixel intensity. Generally, the spatial information
increases with increasing resolution.

Important work in individual tree species classification from multispectral features is
found in Gougeon! (1995). Gougeon| (1995) evaluated seven spectral features for classify-
ing five species of conifersﬂ in Canada. The study found two interesting results. Firstly,
the simplest features; the mean intensity values of the respective spectral bands con-
tributed the most to the classification accuracy. Secondly, repeating the experiment (ten
times), using different training data, resulted in a large variation of classification accuracy
of up to 22 pIﬂ

The idea of utilizing multitemporal data in individual tree species classification is that
species-relevant phenological changes can be measured by collecting the imagery at op-
timal dates. Moreover, the phenological changes are often changes in spectral properties
(e.g. leaves changing colour in fall). This observation motivates to utilize the combination
of multitemporal and multispectral data (Key et al., 2001). |Key et al.[(2001) therefore in-
vestigated the relative contribution to species classification of adding spectral bands ver-
sus adding dates. The experiment uses data from a deciduous forestﬂ in West Virginia.
The study discovered that the contribution to classification accuracy per spectral band is
slightly greater than the contribution per date.

The last category of image data is spatial data. Examples of spatial data include struc-
ture, texturd’] and morphology. Human visual interpretation is to a large extent based on
the interpretation of spatial information (Brandtberg and Warner, |2006). It is therefore
sensible to assume that there should exist spatial descriptors that are able to discriminate
between tree species. Indeed, comprehensive catalogues of spatial descriptors such as

“Barrtrid in Swedish.

SPercentage points (pp) is the unit of arithmetic difference between percentages. For example, the
difference between 1% and 5% is 4 pp.

®Lovskog in Swedish.

7Strictly speaking, only second-order texture is considered to be spatial information. See section
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Fournier et al.| (1995) have been produced for the purpose of species classification, from
manual interpretation of aerial images. However, to utilize spatial data in automatic clas-
sification has proven difficult. Specifically, it is hard to specify exactly what local changes
to look for, and at what scale to look for them (Brandtberg and Warner, 2006). As a conse-
quence, much of the work in species classification from spatial features also uses features
derived from multi-spectral information (e.g. Meyera et al., |1996} Brandtberg, [2002)), or
indirectly uses spectral information by deriving spatial features from multiple spectral
bands (e.g. Erikson, 2004). In some cases, the simple multispectral features contribute
more to classification than the spatial features (e.g. |Brandtberg, 2002). Still, there are
good reasons to omit spectral features in species classification. The problem of basing
features on absolute intensity properties (e.g. mean pixel intensity) is that such features
are sensitive to changes in illumination. For species classification from aerial images,
error sources include: different atmospheric conditions, or weather; different times of
day/year; and differences in viewing geometry for trees at different positions within the
image (Puttonen et al., [2009; Korpela et al., [2011; Lillesand et al., 2004). Furthermore,
the spectral signatures of trees varies within species (Leckie et al., 2005). Also, the spec-
tral signature of trees (even coniferous species) varies with time of year (Guyot et al.,
1989). Guyot et al.| (1989) identifies a comprehensive list of factors affecting the spectral
signatures of forest canopies.

To the best of the authors knowledge, textural measures based on second-order statis-
tics has never been tried in species classification on the single-tree level. However, on a
stand level, |[Franklin et al. (2000, 2001) investigated if features derived from the Gray-
level co-occurrence matrix (GLCM) in addition to multispectral features can be used to
improve classification accuracy, over multispectral features alone. The study found that
the incorporation of texture yielded a significantly greater improvement at a finer scale
(sub-meter resolution) compared with the improvement at a coarser scale. Textural mea-
sures based on first-order statistics are utilized at the single-tree level in (Meyera et al.,
1996)), and in (Leckie et al., 2003b). Specifically, in the form of intensity standard devia-
tion of all pixels within the tree crown. The results of the two studies where ambiguous.
Leckie et al. found that texture did not contribute to classification beyond using just spec-
tral information. In contrast, Meyera et al.| found an improvement when including texture
in principal-component-analysis-derived features. Another first order textural measure;
the entropy of pixel intensities within the tree crown, was utilized at the single-tree level in
(Brandtberg, 2002). The contribution to classification accuracy was found to be modest.

Morphological features in individual tree species classification was introduced by
Brandtberg (1997, 2002). The introduced feature aims to capture the radial branch pat-
tern of a Norwegian spruce crown. In later work by Erikson (2004), four morphological
features were suggested. Each of these features is supposed to single out a specific tree
class (Scots pine, Norwegian spruce, birch, and aspen). The measures captures properties
apparent from inspection of tree images of respective species.

A final class of spatial features for individual tree species classification describes the
geometry of the tree crowns. For example, in (Brandtberg, [2002)), two boundary descrip-
tors and one regional descriptor was defined. The former two features were derived from
the curvature of the boundary pixels between the sunlit and shadowed regions of the tree
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crown. The last feature is the relative crown area (see also |Brandtberg, [1998).

The studies mentioned this far evaluates classification from a relatively small subset
of well-chosen features, where each feature is expected to contribute information. An
alternative approach is to use a larger set of features, where only a subset of features is
expected to be useful, and to search for the useful features by means of feature selection,
or data mining. Boman| (2013) utilizes an SVM-based method of feature selection, devel-
oped in \Guyon et al.| (2002), to evaluate (mainly) textural features for tree classification.
However, the classification problem treated in Boman| (2013) is fundamentally different
from the one in this study. Boman|(2013) uses terrestrial imagery and classifies 128 x 128
sub-images into the classes spruce, pine, and ground.

1.3 Objective

Brandtberg (2002) concludes that it is a difficult, unsolved problem in tree-crown classi-
fication to find appropriate descriptors that contribute significant information to the clas-
sifier. Thirteen years has passed since then, but to the best of the author’s knowledge,
Erikson (2004) is the only study, after [Brandtberg (2002), that uses spatial features in
their own right.

Therefore, the primary objective is to systemically evaluate a large set of features
for discriminating three classes of trees in a Swedish, boreal forest. The tree classes are
specifically; spruce, pine, and deciduous treesﬂ Primarily, spatial features that repre-
sent wide categories of spatial information are considered, but a smaller set of spectral
features are also included for comparison. Because spatial features in general may have
advantages over spectral features, the relative contribution to classification performance
of respective feature subset (spatial and spectral) is of particular interest. What kind of
spectral information is required for classification and what kind of spectral information
the classifier can do without, is subject to analysis.

Spatial features is defined as local changes in pixel intensity. Observe that this defini-
tion excludes textural measures based on first-order statistics, such as the standard devi-
ation in pixel intensity within the tree crown. Such measures are global in the sense that
they do not take into account where particular intensities occur. The distinction between
the two texture classes is further clarified in section [2.5] To avoid ambiguity, spectral
features are here defined as measures of intensity that are global to the tree-crown. This
definition includes textural measures based on first-order statistics.

8In Swedish: gran, tall, and 16vtrid, respectively
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2 Theory

2.1 Symbols and notation

This sections introduces symbols and notation that is used to describe theory in the re-
mainder of the this text. Scalars and functions are denoted by lower case letters, e.g. a, b,
c. For functions in general, the symbols f, g, h are preferred. Vectors are denoted by small
letters in bold font, e.g. u, v, w. Matrices and digital images (expressed as matrices) are
denoted by capital letters, e.g. X, Y. Sets and random variables will also be denoted by
capital letters. For random variables, Z is preferred. Vectors and matrices are referenced
in the ordinary manner. For example the :’th element of the vector v can be written v (),
or just v;. Similarly, for a matrix X the element on the ¢’th row and j’th column is written
X (4, ), or just z;;. The symbols 7, j are in general reserved for indices. For matrices, i
refers to the row index and j to the column index. Unless otherwise stated, indices are
assumed to be positive integers, within bounds of the vector or matrix in context. For
example, if the vector v has n elements, then for v; it can be assumed that ¢ is an integer
suchthat 1 < <n.

Exceptions from these rules are made when there are well established symbols that
denotes a particular entity. For example, entropy will be denoted by S, even though it is a
scalar entity.

2.2 Digital image fundamentals

This section introduces a theoretical framework of digital images, suitable for this article.
Because continuous images and physical photographs are not considered in this work, a
digital image may be referred to as just an image. The section is based on Gonzalez (2008,
chap. 2.4.2, and p. 120).

A m x n-pixel digital grey-image can be represented by a m x n matrix X of discrete
pixel-intensity values, or simply intensities. Furthermore, intensities must be restricted to
a closed interval of non-negative numbers /, starting at 0. Then, if [ denotes the number of
intensity-levels, the interval of possible intensities can be expressed as I = {Vr € Z|0 <
r < l}. Similarly, a digital colour image with m x n pixels and ¢ colour-channels, can be
represented by an m X n X c three-dimensional matrixﬂ

In some cases, it is more convenient to represent the image as a function f : S — 1,
where the spatial domain correspond to set of discrete coordinates inside the image, i.e.
S ={1,2,..m} x {1,2,...n}. This representation is equivalent to f(i,j) = X (i, j) for
grey-images, and similarly f(i, j, k) = X (4, j, k) for colour images.

9The colour images defined here are more general than in everyday language. Any number of colour-
channels is allowed and colour-channels are not bound to specific spectral bands such as red, green, and
blue.
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2.2.1 Image histograms

The image histogram h of the grey-image X is a discrete function
h:1—[0,1] (2.2.1)

that maps a pixel intensity to the fraction of pixels in X of that intensity. Formally, this is
written
h(r) = , (2.2.2)

where r € [ is a particular intensity level and n,. is the count of occurrences of 7 in X. An
important implication of (2.2.2) is that the sum of h’s over its domain [ is exactly equal

to 1, i.e.
1= h(r). (2.2.3)

rel

Because h satisfies (2.2.1) and (2.2.3), it can be interpreted as a probability mass
function. That is, corresponding to h there will be a discrete random variable Z of pixel-
intensity-observations such that / is the probability mass function of Z, i.e. P(r) = h(r).
An observation of Z is interpreted as the intensity of an uniformly-randomly chosen pixel
in X. Also, note that the sample space of Z is equal to I, i.e. {2z = I. These results
are important because they mean that statistical methods can be utilized to analyse the
intensity distribution within an image.

It is sometimes necessary to reduce the number of intensity levels in the image while
conducting analysis. An 8-bit image will have 256 grey-levels, which in some applications
may require too much computational performance. A remedy is to reduce the number of
intensity levels setting the intensity to 7 = | sr ], for the scale factor 0 < s. For example
s = 0.5 will effectively halve the number of levels. This operation is called quantization@]
(Gonzalez, [2008| chap. 2.4). Figure 2.2.1|shows some quantized image histograms.

19Quantization also refers to the process of sampling and digitizing a continuous image, to obtain a digital
image (Gonzalez, [2008, chap. 2.4).
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Figure 2.2.1: Sixteen-bin histograms of the images in figure (the scale factor is s = 1/16).
The histogram of the smooth image is skewed to the left because it has more pixels of lower
intensity. The histogram of the coarse image roughly correspond to a symmetric bell-curve. The
first two histograms are centred near the middle indicating dominance of grey pixels. However,
the last histogram, which correspond to the regular image, is U-shaped. This indicates dominance
of black and white pixels, respectively.



2.3 Image filtering

An image filter is a transformation 7" that is defined on a pixel-neighbourhood, i.e.
Y =T(X), (2.3.1)

for the m x n original grey-image X and the m’ x n’ filtered image Y. For example, T’
may be defined to apply the function g on a pixel and the pixels 4-connected neighbours.
Applying Y = T'(X) means that for all pixels in X, the corresponding pixel in Y has
intensity ry = g(r,r1,re, r3,74), Where r is the intensity of the particular pixel in X and
1,72,73,14 the intensities of its neighbours. This is illustrated in figure 2.3.1] Depending
on the definition of the neighbourhood, the size of ¥ may be smaller than the size of X.
Depending on g, the interval of intensities of Y may differ from X, i.e. it is possible that
Ix # Iy. In fact the filtered result is not even guaranteed to be a digital image, according
to the definition above.

1
11112
2 7 010
111
010
(a) X (b)Y (c)T

Figure 2.3.1: Illustration of image filtering Y = T'(X), where T is defined for a 4-connected
neighbour and applies h(r,r1,r9,73,74) = 1+ 171 + T2 + 13 + 74, t0 each pixel in X to yield Y.
Pixels that where involved for computing the value of one pixel in'Y are highlighted. Note that' Y
is smaller than X, because the neighbourhood is undefined at the borders of X. Also note that Y
is not restricted to the same intensity interval as X, i.e. Ix # Iy is possible. In practice, both
these issues must be dealt with. Furthermore, since 'T' is a linear filter, it can be expressed as a
weight matrix ().

The most common type of filters are linear filters. A linear filter can be expressed as

a weight matrix, e.g.
111
F‘ZL J'

Linear filtering involves dragging the filter over the image, and compute the weighted sum
of pixels at each position in the spatial domain of X where the filter ﬁtﬂ In this article,
the notation

Y =Xx*F, (2.3.2)

is used to denote the linear filtering of the image X by the filter F'. As a basic example

"Tn some literature, this version of filtering is commonly referred to as correlation and the filter matrix
is referred to as a kernel (Gonzalez, 2008|, chap. 3.4.2).
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consider the image

1100
1100
X=10 011
0011

and the filter / defined above. The result from filtering X with F'is

1
X*xF=1.5
0

v Ot Ot
— o O

A graphical illustration of this operation is shown in figure [2.3.2] For more information
on image filtering, see Gonzalez| (2008, chapter 3).

1 11
411 1
(a) Original (b) Filter (c) Result
Figure 2.3.2: Illustration of the the filtering with the sample F' and X from the introductory text
of section[2.3] The filter in (D)) can be understood as a smoothing filter because it has removed the

rapid intensity changes between adjacent black and white pixels. In the result () no white pixel
has any black neighbours, and vice versa for black pixels.

2.3.1 Image derivatives

Image derivatives can be used to extract local intensity changes, or details of an image.
For functions in general, change is represented by the derivative. For a one dimensional
discrete function f : Z — 7Z, the first-order derivative can be defined as

df

L= 1) - f), (23.3)
Similarly, the second-order derivative can be defined as
d*f

Because images can be represented as functions of two variables f(x,y) : N — I, the
concepts of derivatives apply. Because the image is two-dimensional the derivatives can
be directional, e.g. measure the change in the x-axis, or y-axis, respectively. Alternatively,
isotropic derivatives measures change in all directions. The simplest isotropic derivative
is the Laplacian (Gonzalez, [2008, p. 160). For two variables, it is defined by
B 6f  0%f

+ . (2.3.5)

2 —_—
vif= ox?  oy?
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Given the previous definition of the discrete second order derivative, the discrete Lapla-
cian can be expressed as

V2f($>y) :f(x—i-l,y)—i-f(x—1,y)+f(at,y—|—1)+f(x,y—1)—4f(x,y),

which correspond to the linear filter

0 1 0
Ly=11 —4 1]. (2.3.6)
0 1 0

Because this filter measures change relative to the 4-connected neighbours, it is referred
to as the 4-connected Laplacian. Alternative the 8-connected Laplacian, defined as

11 1
Ls= |1 -8 1, (2.3.7)
11 1

can be used to also take diagonal-wise change into account. The difference between the
two is illustrated for a small image in figure[2.3.3] A more natural image and its Ls filtered
version is seen in figure 2.3.4]

8] © &

(a) Original (b) Ly-filtered (c) Lg-filtered

Figure 2.3.3: Example of the 4-connected and 8-connected Laplacian filter, applied to a small
image.

Anisotropic filters can be based on first order derivatives. Typically the filters used
correspond to the principal axes, 1.e. the filter D, correspond to the x-wise derivative and
the filter D, correspond to the y-wise derivative. The filtered results

Gy =XxD,, Gy =X %D, (2.3.8)

are referred to as image gradients. As an example of simple directional derivatives, con-
sider the filters

D,=[-1 1],D,=D! = {_11} : (23.9)

The gradients computed from these respective filters are presented in figure 2.3.3] In
general, the y-wise filter is the x-wise filter rotated by 90°, or D, = DI. Therefore, it is
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sufficient to specify D,. Other examples of image gradients are (in all cases the x-wise
version is given): the Roberts gradient

-1 1
Droberts - |:_1 1:| ) (2310)
the Prewitt gradient
-1 0 1
Dprewitt = (-1 01 s (2311)
—1 1
and the Sobel gradient
-1 0 1
Degper = |—2 0 2. (2.3.12)
-1 01

An important detail is that the shape of the filter effectively determines the positions
relative to the pixels, where the gradients are computed. D,..e+s €valuates the gradient at
the corners of pixels, because the centre of the filter is between the four cells. D, eypitt,
Dgaper on the other hand, evaluates the gradient at pixel centres of all pixels that are not
on the image border.

Given the gradients G, and G, two useful measures at each pixel is the magnitude
of change and the direction of change. Magnitude of change is defined as

|GGy Tz e
mij = || {Gy(i’j.)} 2 = \/(Gz(’&,j)) +(Gy(i,5))2, (2.3.13)

and direction of change (expressed as a unit vector) is defined as

1 Gﬁ(i,ﬁ}
d;j e [Gy(z’,j) . (2.3.14)

For more information on image derivatives, see (Gonzalez (2008, chapter 3.6).
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(b) Lg-filtered

Figure 2.3.4: Lg is used to filter a natural image. On an intuitive level, the filter has extracted the
edges, or contours of regions within the original image. Lightness and darkness information of

regions have been discarded. The original image was provided by Pixbay, http://pixabay.
com,


http://pixabay.com
http://pixabay.com
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(b) Gy

Figure 2.3.5: Illustration of image gradients, using the elementary filters D, D, from equation
(2:329), and the original image from figure[2.3.3d} to generate the directional derivatives, or image
gradient G, G. The diagonal cracks are clearly distinguishable in G, but not seen in G,



2.4 CIR imagery

CIR i1s shorthand for Colour-infra red. Specifically, CIR imagery combines colour bands
with the the portion 0.7 ym to 0.9 pm of the near-infra red band (NIR). This is achieved by
substituting the RGB channels in the image by the CIR spectral bands. NIR is substituted
for red, red is substituted for green, and green is substituted for blue (the blue spectral
band is dropped). Vegetation generally reflects much more in the NIR band than it does
in the colour bands. In CIR imagery, vegetation therefore appears in varying tones of red
(Lillesand et al., 2004, p. 91-96).

2.5 Introduction to texture

An important class of spatial features of an image region is based on its textural con-
tent. While no formal definition can be found in literature, texture intuitively describes
properties such as smoothness, coarseness, and regularity of an image region (see figure
[2.5.1). In image processing, three canonical approaches to texture are statistical, struc-
tural, and spectral. Statistical approaches are based on measuring statistical properties of
pixel intensities, and mainly tries to capture properties such as smoothness, coarseness,
granularity etc. Structural approaches focuses on the arrangement of image primitives.
Finally, spectral approaches operates in the frequency domain (Fourier spectrum) and at-

tempts to capture regularity (Gonzalez|, 2008 chap. 11.3.3).

(a) SMOOTH (b) COARSE (c) REGULAR

Figure 2.5.1: Illustrations of the three texture classes.

Statistical approaches to texture can utilize first-, or second-order statistics
and Agrawal, 2012)). In this article, these two approaches are referred to as first-order
texture and second-order texturd 2. First-order textural measures are derived from the im-
age histogram and encompasses measures such as standard deviation s, central moments
in’s, and entropy S.

The central moment of order n (where n € NU {0}) is defined as (Gonzalez, 2008, p.
828)

pn(Z) = (2= m(2))"p(2), (2.5.1)

z€Q)

I2The terms are however not established in literature.
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where 7 is a random variable of pixel-intensity observations (as defined in section [2.2.1]),
whose sample space (2 is the set of intensity levels; and m is the mean, given by (Gonza-
lez, [2008| p. 828)

m(Z) =Y zp(z). (2.5.2)

z€Q)

Note that from these definitions it follows that 1y = 1 and p; = 0. The most common
central moments are: variance o2 = uﬂ skewness i3, and kurtosis 4 (Aggarwal and
Agrawal, |2012)). A fundamental problem with these moments is that they are scale de-
pendant. For example, skewness will take different value depending on if the same data
is presented in meters or centimetres. The effect of scale can be eliminated completely by
standardizing the moments (Ramsey et al., 2002)). The standardized moments are defines
as:

an(Z) = “—ﬁ (2.5.3)
H3
or equivalently
an(2) = (2.5.4)
O-’I'L

where o is the n-normalized standard deviation'?. Note that these definitions yield & =
1 and &; = O like before, but also & = 1. In the remainder of this article, unless
otherwise stated, the term central moments will refer to the standardized central moments.
Additionally, skewness and kurtosis will refer to &3 and ¢, respectively.

Another useful first-order textural measure is the entropy of the image histogram (uti-
lized e.g. in Brandtberg, [2002). The definition of entropy is (Gonzalez, 2008 p. 532)

S(Z) == p(z)log,(p(2)). (25.5)

zeQ)

The treatment on first order texture has so far been abstract. The aim of the following
discussion is to assess what these measures captures on an intuitive level. As noted before,
first-order texture does not take into account the spatial organization of pixel intensities.
Therefore, to understand first-order texture, it is sufficient to look at the histograms. Fig-
ure shows some fundamental image histograms. Firstly, entropy S is the amount
of disorder in the distribution. The more evenly the intensities are distributed over the
bins, the higher the entropy. In figure [2.5.2] the extreme cases are shown in CONSTANT
and FLAT, which illustrates perfect order and perfect disorder, respectively. In CON-
STANT, all pixels fall into just one bin. That minimizes the entropy. In FLAT on the other
hand, all intensity levels distribute equally over the bins, thus maximizing the entropy.
Skewness &3 can be understood as a measure of how intensity levels distribute about the
mean. The more pixels on one side of the mean compared to the other side, the more
skewness. SKEWED in figure exemplifies a histogram of relatively great skewness.

3Note that the variance o2 is different from the variance s2. o2 is called the n-normalized variance,

because it is normalized by the number of samples, which correspond to the probability factors in equation
(251). s? is called the sample variance or n — 1-normalized variance because it is normalized by the
number of samples minus one. For more information, see any good textbook on statistics, e.g. |Alm and
Britton| (2008 p. 245).
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Figure 2.5.2: Some fundamental histogram shapes. In CONSTANT, all pixels have the same in-
tensity. In FLAT, all the intensity levels are equally common. SKEWED exemplifies a skewed
histogram where pixel intensities tend to be darker than the average intensity. Finally, in SPIKY,
a spike around the intensity level in the middle of the interval. All histograms have 64 bins. The
original data had 256 intensity-levels.

Finally, kurtosis &4 can be understood as a measure of how spike-shaped the histogram
is. SPIKY in figure [2.5.2] shows a histogram of relatively large kurtosis. The first order
texture measures for the images behind the histograms in figure [2.5.2] and also for the
imagery in figure [2.5.1] are composed in table [2.5.1] As expected the constant-intensity
image CONSTANT, has the minimum entropy of zero, while the image with equally dis-
tributed intensities FLAT maximizes entropy. SKEWED displays the highest skewness and
SPIKY displays the highest kurtosis. For the texture classes, SMOOTH and COARSE yield
similar values, even though the texture content seems very different from inspection. It
is however interesting that REGULAR has a high standard deviation and a low skewness.
This is explained by the tendency of pixels in REGULAR to be either very bright, or very
dark.

To conclude this section, first-order texture fails to separate between the fundamental
texture classes in figure The reason is that they don’t take spatial information into
account, i.e. are not spatial features. Second-order textural features on the other hand,
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Table 2.5.1: Statistical measures for the imagery in and the imagery behind the histograms
in figure 2.5.2] The values was computed using all intensity-levels (256 bins). s denotes (n-1
normalized) sample standard deviation. & denotes skewness and &y denotes kurtosis. S denotes
entropy.

S OAég OAé4 S
SMOOTH 0.231 0.175 2.155 7.824
COARSE 0.121 0.130 3.132 6.985
REGULAR 0.355 0.035 1.493 7.001
CONSTANT 0.000 0.000 0.000 0.000

FLAT 0.290 0.000 1.800 &.000
SKEWED 0.193 0.865 3.395 7.507
SPIKY 0.092 0.010 7.986 6.389

not only considers what intensities occur, but also takes into account where they occur in
relation to each other(Aggarwal and Agrawal, 2012). Second-order textural features are
thus spatial features. A canonical approach to second-order textural features, utilizes the
Gray-level co-occurrence matrix (GLCM) proposed by Haralick et al.| (1973), (see also
Gonzalez, 2008, p. 830-836). This is the topic of the next section.

2.6 The Gray-level co-occurrence matrix (GLCM)

This treatment on the GLCM is based on (Gonzalez, 2008, p. 830-836). As briefly men-
tioned at the end of the previous section, the GLCM is a standard approach to texture
classification. In principle, the GLCM is a two dimensional histogram that counts how
frequently pairs of respective intensities (or grey-levels) co-occur. Co-occurrence is de-
fined by a spatial relationship operator q that maps each pixels of interest to a neighbour
pixel. For simplicity, g will be a fixed offset (although more complex spatial relationships
are possible). The offset is represented by a vector. Initially, the one-to-the-right-offset,
ie. ¢ = [0 1]7, is considered in the following examples. The GLCM G of image X
corresponding to the spatial relationship g will be an [ x [ matrix. A particular value g;; in
G, is the count of intensity level 7 co-occurring with intensity level j (see figure for
an example). In practice, the image is usually quantized prior to construction, so that the
size of (G is manageable from a performance-perspective. In the examples that follows,
eight distinct levels are utilized, which means that GG is 8 x 8.

The original work by Haralick et al. (1973)) utilizes a bi-directional GLCM, i.e. if
the intensities (7, j) are related by the spatial relationship ¢, then so are (j,7). Such a
GLCM is obtained by adding G, with spatial relationship ¢ to GG/, with spatial relationship
—q. However, changing the sign of the spatial relationship effectively swaps the co-
occurrences from (i, j) to (4,7). Therefore, G’ = GT, and there is no need to compute
more than one GLCM. In practice, the bi-directional GLCM Gy is instead computed as

Gy =G+ GT. (2.6.1)

Like for image histograms, in order to take statistical measures directly from the GLCM,
it must be a probability mass function (PMF), i.e. satisfy the two-variable counterparts
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Figure 2.6.1: A small sample image and its (one-directional, non-normalized) GLCM with the
one-to-the-right spatial relationship a.k.a. ¢ = [0 1]T. The two colour labelled cells in the
image and GLCM exemplifies two co-occurrences. Green correspond to co-occurrences of (0,1),
and cyan to co-occurrences of (2, 2).

of equations (2.2.1), and (2.2.3). A PMF is obtained from dividing G5 by the sum of its

elements, i.e.

P = L (2.6.2)

z Gali, )

The bi-directional and normalized P will from here on be referred to just as the GLCM.
All three steps to obtain P are illustrated in figure [2.6.2]

NE

i=1

2 210 4 210 4 2 10
103 10 126 10 Y 26 10
G=10 0 41 Go=11 1 81 P=%|1 151
0 00 2 001 4 0 01 4

(a) original (b) bi-directional (c) normalized

Figure 2.6.2: Steps for obtaining P. The original G is the same as in figure m The bi-
directional GLCM Gy is symmetric because bi-directionality means that G2 (i,7) = Ga(j,1).
Also, the sum of all elements in G is twice that G because both (i, j) and (j, 1) is counted for each
pixel-pair. P is both bi-directional and normalized (the sum of all elements equals 1). In effect,
P contains the probabilities of co-occurrences. Strictly speaking, because P is bi-directional the
probability of (i, j) co-occurring, is P(i,j) + P(j,1), or equivalently 2P(i,75), if i # j. The
probability of i to co-occur with itself is however just P(i,1).
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2.6.1 GLCM features

The basest measures are the mean and variance. A possible extension to two-dimensional
histograms is to define row-wise and column-wise means and variances. The row-wise
mean is defined as
me= > ipy, (2.6.3)
(i.§)EIXI
where [ is the (possibly quantized) interval of intensity levels and x denotes the Cartesian
product. Similarly, the column-wise mean is

me= > jpi (2.6.4)
(3,5)EIXT
The variances are defined as
ol = > (i—m)’py (2.6.5)
(i,5)EIxI
and
ol = (j—m)’py (2.6.6)
(i,5)EIXT

respectively. Further measures which are common in image analysis (Haralick et al.,
1973)), along with descriptions of their interpretations are summarized in table [2.6.1]

To get a better intuitive understanding of the features, the texture-class imagery in fig-
ure and the chessboard imagery in figure[2.6.3/have been used to generate the results
in table[2.6.2] The remainder of this section is a discussion of these results. The imagery
SMOOTH, COARSE, and REGULAR will be referred to as the texture set, and the imagery
CHESS1, CHESS2, and CHESS3 as the chess set. An important difference between these
sets is that all imagery in the texture set displays some degree of smoothness, i.e. in a
small neighbourhood the intensity increases gradually. In the Chess set on the other hand,
the intensity between two adjacent pixels can go from 0 to 255 (eight-bit imagery is used).

All images except REGULAR display fairly equal values in the for horizontal and ver-
tical features. In fact, all features seem to vary significantly with direction for REGULAR,
which suggest that the GLCM features in multiple principal directions can describe reg-
ular texture. The results corresponding to SMOOTH and COARSE also show some results
that are intuitive. The slow transition in SMOOTH yield a high correlation and homogene-
ity compared to COARSE. COARSE on the other hand has the higher contrast. A less
intuitive result is that SMOOTH that certainly looks orderly, displays high entropy and low
energy compared to COARSE.

Perfect vertical positive correlation (equal to 1) is according to table seen in
the image REGULAR. Because it consists only of columns of constant intensity, any pixel
can only co-occur with another pixel of the same intensity. Thus, the GLCM is diagonal,
which correspond to perfect correlation. The horizontal correlation of REGULAR is how-
ever not perfect. It is impossible to have both all columns and all rows constant without
having the whole image constant. Also, as explained in table correlation is unde-
fined for zero GLCM-variances. If an image is constant, it has zero GLCM-variances.
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Table 2.6.1: Some of the most popular Haralick features derived from the normalized, bi-

directional GLCM P. i and j are pixel intensities in the (possibly quantized) interval 1.

Name

Interpretation

Formula

Maximum Proba-

billity
Correlation

Contrast

Energy

How often the most commonly co-occurring in-
tensity levels co-occur.

How correlated co-occurring pixels are, over
the entire image. The measure takes values in
the interval [—1, 1]. The measure is undefined
if either o2 or o2 is zero.

Contrast of co-occurring intensities over the en-
tire image. It takes values in [0, (L — 1)?]

Also known as Angular Second Moment
(ASM), or Uniformity. Measures of the order

max (pis)

Z (i=mr)(G—mec)pij
- oZo?
7]

>0 —5)%py

Z?]

Z P?j
7’7]

in the image, and takes values in [1//2, 1]. It is

1 if the image is uniform and 1/1? if the GLCM

is single-valued.

A measure of closeness to the GLCM diagonal = ) 5 +’|JZJ_ 7
in [1/1,1]. Ttis 1 when the GLCM is diagonal "’

(and intensities in the image only co-occur with

themselves). It is 1/l when the GLCM is anti-

diagonal.

Is a measure of disorder in the GLCM with val-  — " p;; log, (p;;)
ues in [0, 2log,(1)]. It is 0 when all elements in b

the GLCM except one are zero. It is maximized

when all GLCM values are equal.

Homogeneity

Entropy

Therefore, perfect correlation is only possible in one principal direction. Perfect nega-
tive correlation is seen in CHESS2. The only non-zeros in its corresponding GLCM are
the uppermost-rightmost and downmost-leftmost, respectively; which correspond to co-
occurrences of (0,255). In general any anti-diagonal GLCM will have perfect negative
correlation.

REGULAR and CHESS?2 also displays the extremes for contrast. REGULAR has zero
vertical contrast and CHESS2 has maximal contrast 49 = (I — 1)? in both principal di-
rections. Homogeneity is maximized by REGULAR (vertically) and CONSTANT, and is
minimized by CHESS2 to 0.125 = 1/1.

CONSTANT has no texture component at all. It therefore takes extreme values for all
features listed in the tables [2.6.2] except for correlation (for which it is undefined). This
is the case for both principal directions. In particular, CONSTANT demonstrates perfect
order, because it minimizes entropy and maximizes energy. To illustrate perfect GLCM
disorder is quite difficult. A small example which maximizes entropy and minimizes
energy is presented in figure |[2.6.4
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(a) CHESS1

(b) CHESS2

(c) CHESS3

Figure 2.6.3: Three chessboard images of various frequencies, all of size 64 x 64. CHESS1 is an
ordinary 8 x 8 board, i.e. the length of a tile side or ‘wavelength’ is 8 pixels. In CHESS2 the
wavelength is very short, just 1 pixel. The last board CHESS3 consists of the xor (exclusive or)
of the ordinary chessboard CHESS1 and a high-frequency chessboard with wavelength 2 pixels.
Thus, there should be two dominating frequencies in CHESS3.

Table 2.6.2: GLCM features for horizontal offsets ¢ = [0 1|7, and vertical offsets ¢ = [1 0]7.
The features are calculated for the texture-class imagery in figure[2.5.1) and for the chess imagery
in figure 2.6.3] Because CONSTANT has zero GLCM-variance correlation is undefined for the

particular image (see table[2.6.1).

(a) Horizontal offset

Max(P) Correlation Contrast Energy Homogeneity Entropy
SMOOTH 0.177 0.997 0.019 0.140 0.991 3.011
COARSE 0.341 0.927 0.149 0.211 0.926 2.785
REGULAR 0.212 0.979 0.314 0.108 0.843 3.851
CONSTANT 1.000 - 0.000 1.000 1.000 0.000
CHESS1 0.444 0.778 5.444 0.401 0.903 1.503
CHESS2 0.500 —1.000 49.000 0.500 0.125 1.000
CHESS3 0.310 0.238 18.667 0.264 0.667 1.959

(b) Vertical offset

Max(P) Correlation Contrast Energy Homogeneity Entropy
SMOOTH 0.177 0.997 0.019 0.140 0.991 3.011
COARSE 0.340 0.926 0.150 0.209 0.925 2.790
REGULAR 0.234 1.000 0.000 0.157 1.000 2.838
CONSTANT 1.000 - 0.000 1.000 1.000 0.000
CHESS1 0.444 0.778 5.444 0.401 0.903 1.503
CHESS2 0.500 —1.000 49.000 0.500 0.125 1.000
CHESS3 0.310 0.238 18.667 0.264 0.667 1.959




ol1]1 0[1]1]
1lolo 111
(a) Image (b) GLCM

Figure 2.6.4: A small binary image of perfect GLCM disorder (using one-to-the-right spatial
relationship). Its Entropy is 2 = 21og,(2), and its Energy is 1/4. Note that the the GLCM is not
bi-directional, neither is it normalized.

2.6.2 GLCM at multiple scales

So far we have only considered step lengths of length 1. In practical applications, this
step length might bee to small to reveal interesting detail. This section investigates what
information can be revealed from looking at the texture set imagery at multiple scales.

Intuitively, smooth texture should be characterized as having little detail at fine scales.
This can also be seen for SMOOTH in figure [2.6.5] because at a finer scale the contrast
is low, but the correlation is high. However, because the image SMOOTH display a sys-
tematic change from one side of the image to the other, the contrast increases with the
scale.

The COARSE image displays no systematic intensity change. Hence, the features flat-
tens out when the step length gets sufficiently large as seen in figure [2.6.6] Interestingly,
at the finest scales (step lengths near 1), the features of COARSE takes values similar to
SMOOTH.

Finally, the multiscale plot of the REGULAR image clearly shows frequency informa-
tion as seen in figure Both Correlation and Contrast becomes sinusoids with the
same frequency as the pattern in REGULAR. The other features are also periodic, but
correspond to more complex functions of the step-length.
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Figure 2.6.5: GLCM features of SMOOTH, at different scales. Step lengths from I to 128 was
used, and the GLCM has eight levels. Because the image displays systematic change, the contrast
increases smoothly with the step-length. Also, note that the the plots corresponding to correlation

and homogeneity almost coincide.
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Figure 2.6.6: GLCM features of COARSE, at different scales (see figure . For small step
lengths, all features develops rapidly up a step-length of about 16, but then flattens out. This tells
us that the details in the COARSE are smaller than 16 pixels. Also, the flat tail means that the

image has no systematic change.
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Figure 2.6.7: GLCM features of REGULAR, at different scales (see figure . All features
display distinguishable periodic pattern with a period of 42.7 pixels. The correlation and homo-
geneity features even form sinusoidal patterns.



2.7 Wavelets and multiresolution theory

The difficulty of choosing the appropriate scale to look for texture, or spatial features in
general, has already been noted (see section[I.2). The remedy to this fundamental problem
is to look at multiple scales at once. In signal processing, this is simple idea has spawned
the entire sub-field of multiresolution theory, and its foundation is the wavelet transform
(Mallat, 1989). Because images can be viewed as two-dimensional signals, wavelets are
also applicable to image analysis. Wavelets are small waves of specific frequencies and
limited duration (Gonzalez, 2008, p. 461). The latter property is of particular importance
in image analysis, since images are always of limited duration. This brief introduction to
wavelets will focus on the Haar wavelet. A final note before we start is that the signals
considered in the remainder of this introduction to wavelets will have sizes n = 2F for
k € NU {0}. That is, because we want to be able to sub-sample a digital signal until its
size equals one.

2.7.1 The Haar wavelet

The first and simplest wavelet was suggested in |Haar| (1910). It is therefore known as
the Haar wavelet. The explanation given in this section is based on (Strang, 2009, p.
391-392) and (Gonzalez, [2008, chap. 7).

Starting with the one-dimensional case, a digital signal can for our purposes be con-
sidered a real vector z (here we will use column vectors). Furthermore, the length of z is
limited to powers of twos, i.e. n = 2* for k € N U {0}. The Haar transform is then a
recursive function which takes averages and differences of adjacent elements in z, and in
each step sub-samples it (i.e. reduces the number of elements). See algorithms [I]and [2]

In the algorithms, the vector a is called an approximation of x and the vector d the
detail of z. The output of algorithm (1| is the vector of haar coefficients ¢, that has the
format

a
dy.
c= |dr1], (2.7.1)

di
where k£ = log,(n) is the depth of recursion, and « is the scalar approximation of the
signal, i.e. the signal approximated as a single value. The decomposition procedure is
illustrated in figure [2.7.1]

Each recursion of algorithm |1| effectively halves the resolution in the approximation
a and extracts detail components d of doubling coarseness. Specifically, the sizes of
a;y1,d; 1 is half that of a;,1,d; 1, respectively. In particular, this means that the wave-
length of details in d; at any level ¢, will be 2i. In this sense ¢ represents the image on
multiple scales. Furthermore, c is the same size as the original signal , meaning that it is
a compact representation of x. Also, the original signal = can be perfectly recovered from
¢ by applying the inverse Haar transform. Omitting the details, the inverse transform
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function haar-transform(x)begin

(a,d) := haar-step(z)
if length(a) > 1 then
Chead = haar-transform(a,d)
else
| Chead ‘— Q@

end

. | Chead
return: { d }

end

Algorithm 1: One dimensional Haar-transform.

function haar-step(x)begin
for each odd i from 1 to length(x)-1 do

L T2 F+T2i41
@ i=
d: = T2i—T2i41

T T 2

end
return: (a,d)
end
Algorithm 2: Calculation of the Haar wavelet approximation- and detail- components.

up-samples the approximations by adding the detail components back, that is
ay-1(2i) = ay(i) — di(7) (2.7.2)

and

until £ = 0 (note that the zero-level approximation is the original signal a; = z). Finally,
it is not necessary to decompose the signal to one value. In practice, the recursion of
algorithm I] can be truncated at a specific level of depth that befits the application.
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Figure 2.7.1: lllustration of the 1D Haar transform. The leaf-nodes form the coefficients c in the
correct order. Figure provided by Niclas Borlin. Used with permission.



2.7.2 Extension of the Haar-transform to 2D

To extend the haar-step to the two-dimensional case is a simple matter of applying the
one dimensional Haar-transform to each row, and then to each column of X, resulting in
an approximation A and three detail components Dy, Dy, and Dp, each of which is 1/4
the size of X (area-wise). The details are as follows. The transform haar-step-columns is
defined to take a matrix for input and apply haar-step to each column of the matrix. That
is,if X = [a:l, o, .'I:n] , where x;’s are columns, then

haar-step-column(X) = [haar-step(x,) haar-step(xs) ... haar-step(x,)]. (2.7.4)
Similarily,
haar-step(y,)"
haar-ste T
haar-step-row(X ) = ,p(y2> : (2.7.5)

haar-step (Y, )"

where the y;’s are columns of X. The definition of the 2D transform is trivial:
haar-step-2D(X) = haar-step-rows(haar-step-columns(X)). (2.7.6)

The output matrix will have the block structure

Dy Dp (2.7.7)

haar-step-2D(X ) = [ A DH] ,
where A is called the approximation, Dy the horizontal detail, Dy the vertical detail, and
Dp the diagonal detail. As in the 1D case, the two dimensional haar-transform is obtained
by recursive application of haar-step-2D on successive approximations. A limited depth

2D haar-transformation is illustrated in figure
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(a) Haar decomposition

AQ DHQ DH
Dyy Dpo !
DVl DDI

(b) Block structure

Figure 2.7.2: Example of the two dimensional haar transform (with recursion depth limited to two
levels). (ld) shows a sample Haar decomposition of a Passion flower image. (b)) shows the decom-
positions block structure. In the decomposition there are six detail components corresponding to
two different scales and the three different principal directions. Also, the second-level approxima-
tion is seen in the upper-left corner. In particular, note how the detail components captures the
flower petals. In Dy and Do the vertically aligned petals are more distinctive. Correspond-
ingly, in Dy 1 and Dy o the horizontally aligned petals are more distinctive. Dp1 and D po both
display a cross-pattern. Passion flower image provided by Pixbay, http://pixabay.comn.


http://pixabay.com

2.8 Supervised learning and classification

Machine learning is about estimating some unknown function f by another function
h. h is called an hypothesis. In supervised learning, the value of f is known at a
finite set of points from which the h is built. Formally, a supervised-learning prob-
lem is recognized as follows: Given a training set of m input-output pairs X;r4in =
{(z1,%1), (x2,92), .-.(Tmm, Ym )}, such that y; = f(z;) for all 1 < i < m, find h that
approximates f.

Supervised learning problems where the the possible values of f are a finite set
are called classification problems. For classifiers, the input x;’s are called observations
and the output y;’s are called class-labels. Observations are typically so-called feature-
vectors, i.e. vectors of n featureﬁ For convenience the observations are organized into
a feature matrix, where rows correspond to observations and columns to features. Also,
the class labels are organized corresponding to observations, i.e.

~'L'1T Y1
T
T
x= |7 y= " 2.8.1)
xl Yrm

The hypothesis, when given a feature matrix will return a vector of predictions corre-
sponding to each observation, i.e.
y* = h(X). (2.8.2)

For more information on supervised learning and classification, seeRussell and Norvig
(2010, chapter 18).

141n some literature, the name attributes is used instead of features.
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2.8.1 Generalization and overfitting

For clarity, this section deals with continuous y;’s, i.e. the problems in the examples are
not classification problems. But the conclusions apply to classification problems as well.
Let h denote a hypothesis, trained with the training data X 4in, Yirain. The training data
was sampled from the function f. The fraction of correctly classified observations in
Xirain Will differ, depending on what kind of A is chosen and of f. If all observations
are correctly classified, i.e. if Yuain = Yfrgin = P Xerain), then h is called a consistent
hypothesis. In many cases, the degree of consistency (fraction of correctly classified
training data) can be adjusted by varying the complexity of h. For example, if h is a
polynomial, the degree of the polynomial can model complexity. However, the usefulness
of a hypothesis is not determined by how well it can describe the training data, because
we already know the real values y;,;,. The real usefulness is determined by how well i
can classify new data. A h that does well on new data is said to generalize well. That is, if
Xiest> Yrest denotes the test data, that like the training data is sampled from f, but not used
to train h. Then, h trained with Xi,qin, Yirain generalizes well if h(Xiest) = Yrosr = Yiest-

The issue of overfitting is that consistency of h does not guarantee that i generalizes
well. On the contrary, there is often a simplicity-complexity trade-off between simple
h’s which may generalize better, and complex h’s that describes the data in more detail.
This trade-off is illustrated in figure for polynomial h. Intuitively, overfitting can
be illustrated by a student which memorizes the answers to all exercise questions, rather
than to understand them. Overfitting can happen for all types of learners, even when £ is
constrained to be very simple. However, in general, the influence of overfitting increases
with the number of features, but decreases when more observations are added to the train-
ing data. In figure[2.8.2]the complex type of hypothesis from figure [2.8.1d]is remedied by
the addition of training data.

This section is based on (Russell and Norvig, 2010, chap. 18.3.5).
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Figure 2.8.1: Illustration of overfitting with a training set of five observation-value pairs. The
hypotheses h is a polynomial of varying complexity. The two simplest hypothesis in [d| and [P))
generalizes better than the more complex hypotheses used in|dand[d), because of the fact that the
simpler hypotheses comes closer to the real function f at points that are not very near the training
data. The only consistent hypothesis is seen in[d| It generalizes poorly because it diverges rapidly
from f outside the interval containing the train data.
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Figure 2.8.2: If the set of training data is increased to 50 pairs, the overfitting problem diminishes
for the fifth degree polynomial hypothesis.



2.8.2 Classification performance

The previous section stated that a good hypothesis generalizes well, i.e. performs well
on test data. This section quantifies how to measure generalization. In the remainder of
the article, the term classification performance will be used synonymously with classifier
generalization.

In general, the classification performance can be evaluated if the cost of misclassifica-
tion is known (which is very domain specific). That is, the loss of classifying h(z) = y*
is given by a function L(y, y*)E] (note that scalar class labels y, y* are considered in the
definition of the function). Also, let £ denote the set of all possible observation-, class-
label- pairs, i.e. all pairs (z,y), for any  in the feature-vector domain. Also, let P(z,y)
denote the prior probability distribution that the feature vector  occurs with the class data
y. The Generalization loss 1s then given by

GenLossp(h) = > L(yi, h(w:)) P(w:, ys). (2.8.3)

(xiyi)eE

This general measure denotes the real performance of the classifier if L is properly se@
However, in most practical problems neither £ nor P are known. If instead all available
data E* is used as an estimation of £, an estimation of the generalization loss called
empirical loss is given by

EmpLoss(h) = Z L(y;, h(z;)). (2.8.4)
(ziy:)EE™

Finally, to make the result easier to interpret, it is sometimes useful to normalize the loss
by dividing it by the number of observations m. The normalized empirical loss is then

1
NEmpLoss(h) = — > L(y;, h(z;)). (2.8.5)
(ziy:)EE™
A simple loss function is
0 ify=y*
Lo(y,y") = . 2.8.6
%(y V) 1 otherwise ( )
The normalized empirical loss using L 0 is the fraction off misclassifications
NEmpLoss,, (h) = —wrong (2.8.7)
b L% Nyight + Nwrong ’ o

where 1,545 and nr0ng refers to the number of correct and incorrect predictions, respec-
tively.

5In general L(z,y, y*), but for this study the simpler version that omits z is sufficient.

16 At Jeast for the more general version.

Technically speaking, E* is not a set, because it is possible for distinct observations to have the same
class labels and feature vector. One way to deal with this is to let £* denote an ordered array of feature-
vector-, class-label- pairs.
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This measure is suitable when the cost of misclassification is similar for all classes,
and when the class frequencies are the same. But, when the class frequencies are different,
NEmpLossy,, is problematic. As an example, consider a forest of 999 spruces and

T

just one pine. Let the hypothesis & be, ‘all trees in the forest are spruces,” i.e. h(z) =
spruce. Then N EmpLossy,, (h) = .001 which is considerably small. Does that mean
T

that h was a good hypothesis? When all classes in the population are equally important,
but the fraction of classes in the population are different, it is feasible to use the class-
normalized empirical loss. This loss assigns equal importance to all classes. This means
that all classes of any kind contributes with 1/k to N EmpLoss. For example, to wrongly
classify all observations of class 7, but to correctly classify all instances of the £ — 1 other
classes will yield a normalized empirical loss of 1/k. The class-normalized loss function
is defined as

@) otherwise,

where £ is the number of classes, and n(y) is the count of observations of the class y. The
normalized empirical loss using L., can be expressed:

. 0 ify; =y~
Len(yiny™) = { m (2.8.3)

k .
1 wron
NEmplossz,(h) = - ”Tlg)(l) (2.8.9)
i=1

where 7,,-0ny () denotes the number of wrong predictions of the class 1.
This section is based on (Russell and Norvig, 2010, chapter 18.4.2).

2.8.3 Cross-validation

As explained in section when evaluating performance the training set and test set
must be disjoint. This means that the feature matrix X and class labels y corresponding to
the whole dataset, must be partitioned into training data X;,q4in, Yirain and test data X;eq,
Yiest- The obvious problem with this is that we cannot fully utilize the whole dataset. To
produce a reliable classifier we want to train it with as much test data as possible. Also,
we want to use as much data in the training set as possible, in order to produce statistically
reliable performance result.

This problem is solved by a method called k-fold cross-validation, that works as fol-
lows. First, divide the data into k equally sized partitions: X7, Xo, ... Xk, Y1, Y2, ... Yk.
Evaluate the result for £ folds. In each fold, take all except one of the partitions as train-
ing data, and use the single remaining partition for test data. That is, for the 7’th fold
let
[ Xy ] [ Y1 ]

X Y2

Xtrain: Xi—l yYtrain = |Yi-1
Xiv1 Yit1

| X | Y
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and let
Xtest = Xivytest =Y.

5 and 10 are popular values for £ (Russell and Norvig, 2010, chapter 18.4.0).

In each fold, a performance metric such as that in equation is computed. Alter-
natively, the predictions generated in each fold can be stored to generate a compound pre-
diction, and performance evaluated on all predictions. In particular, the class-normalized
loss in (2.8.9) computed on all predictions is likely to yield a different result than com-
puting it in each fold and taking the average of the folds. The reason is that in the former
case n(2) and 7,0ng(?) are based on all data. In the later case they are just based on test
data.

2.9 The support vector machine (SVM)

The SVM is today the most popular “off-the-shelf” classifier, because it is simple, com-
putationally efficient, does not depend on parameters in its simplest form, and because
it performs well in many cases (Russell and Norvig, 2010, p. 744). In this introduction,
only linear SVM’s will be considered, but SVM'’s are extendable to non-linear cases cases
as well.

The SVM is a binary classifier, which means that it can only discriminate two classes.
The classes are traditionally referred to as the positive- and negative- class, or alternatively
the +1 class and the —1 class. Basically, the SVM constructs a decision boundary that
best separates the two classes in the training data. Specifically, the boundary is chosen as
the hyperplane that maximizes the margin between the nearest observations of respective
classes, i.e. a maximum margin separator. In order to predict a test observation, the SVM
uses a decision function d that is a signed distance measure from the observation (feature
vector) to the decision boundary. If the sign is positive, the observation is predicted to
belong to the +1 class, and vice versa for the —1 class (hence the names). The hypothesis
function / corresponding to the SVM is given by

h(z) = sign(d(z)), (2.9.1)

where additionally the case of d(z) = 0 may have to be defined in practice. Figure
illustrates the SVM. For more information on SVM’s see also Burges| (1998)).

2.9.1 Extension to more than two classes

For multi class problems involving more than two classes, several binary SVMs can be
combined in order to produce a multi-class classifier, or multi-SVM. Two simple, canoni-
cal approaches is the one-versus-all method and the one-versus-one method (Hsu and Lin,
2002).

The one-versus-all method trains & partial-SVMs, each corresponding to one class.
The partial-SVM corresponding to the class ¢ is trained with observations of class ¢ with
the positive labels and observations of other classes with negative labels. Thus, all obser-
vations are used in each classifier. Prediction of a test data sample is done by choosing
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Figure 2.9.1: Illustration of a SVM feature space and the SVM decision boundary. In this case,
the SVM is not consistent because it fails to classify some of the training data. This means that the
the maximum margin is negative. Only the support vectors need to be used in computations, which
is one of the reasons for SVMs efficiency. This example utilizes the iris data in (1936).

Versicolor and Virginica are the names of the classes.



the class corresponding to the partial-SVM that maximizes the decision function (d in the
previous section) (Hsu and Lin, 2002).

The one-versus-one method trains k(k — 1) /2 partial-SVMs corresponding to pairs of
classes. Specifically, the partial-SVM corresponding to the pair (4, j) is trained using only
the observations of class 7 (with negative labels) and class j (with positive labels). Once
the partial-SVMs have been trained, prediction can be done with this voting scheme: Let
x denote the feature vector corresponding to the observation to predict. Also, let v denote
a vector of length & (one cell per class) that is initially set to zero. For each partial-SVM:
predict z. If predicted as —1, then increment v(i) by one. Otherwise increment v(7)
by one. When this is done, v is a vector of votes. The class receiving the most votes is
chosen as the compound prediction. Alternatively, on a tie, the prediction is either marked
as unresolved, or the prediction has to be determined by some other method (Hsu and Lin,
2002).

2.10 Feature selection and feature ranking for classification prob-
lems

For real-world classification problems in general, little is known about how features relate
to classes. In particular, a features relevance and redundancy are important concepts that
are scarcely understood. Relevance is a particular features ability to discriminate between
given classes. Redundancy, or rather non-redundancy, refers to the amount of classifica-
tion performance the particular feature adds over the other features used in classification.
A canonical method for dealing with the lack-of-knowledge problem is to introduce a
multitude of candidate features. The drawback of this approach is that irrelevant and re-
dundant information is added, which causes overfitting. The classifier performance could
be improved, if it was possible to keep only relevant, non-redundant features (Tang et al.,
2014).

The problem of feature selection consist of finding an optimal subset of features, e.g.
optimal in the sense of classification performance, or runtime. Given a particular clas-
sifier, an exhaustive search for the optimal subset of features can be done by evaluating
performance for all 2" — 1 subsets of features. This leads to combinatorial explosion.
Therefore, in practice for large feature sets, we have to be content with a sub-optimal
subset (Tang et al.l 2014).

A distinct but closely related problem is feature ranking. Feature ranking assigns a
rank to each feature, in the form of a unique number ranging from 1 to m. The result is a
top m list of features. Feature ranking is easily transformed to feature selection, e.g. by
keeping the top m’ features, or by repeatedly removing the worst feature until a loss in
classification performance supersedes a threshold value (Guyon et al., 2002).
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2.10.1 Feature ranking with the SVM

The method described here was suggested in (Guyon et al., |2002). It was originally
developed for linear SVMs, but is general to classifiers that are linear and multivariate
(optimized during training to handle multiple features). The basic idea of the algorithm is
that the the more orthogonal the decision boundary is to the feature, the more important
the feature is. This is illustrated in figure The method takes an approach to feature
ranking called recursive feature elimination. At every step, the SVM is trained using
features that are not ranked (initially all). The feature that is most parallel to the decision
boundary is assigned a rank, and thus is excluded from successive steps. Algorithm [3]
provides the details.

function svm-rfe( X,,y)begin

s:=[1 2 ... n]#The setof surviving features.

r := [ | # Set of ranks.

while s # [ | do
# Get the columns of X, corresponding to surviving features.
X = Xo(:,8)

h = trainSVM(X,y)

# Obtain the normal to the decision boundary.

w = decisionBoundaryN ormal(h)

# % denotes the element wise products.

# The multiplication removes the sign.

¢ = wiw

# Index least important feature that still survives.

[ :==indexO f Min(c)

# Add the feature to the rankings and remove it from surviving features.

= Sf ’l"]

s:=[s(1:f—1) s(f+1:length(s))]
end
return: r

end
Algorithm 3: Feature ranking algorithm. MatLab notation is used for readability.

A problem with this approach is that the selection is subject to scale bias, as illustrated
in figure To deal with this, [Guyon et al.| (2002) suggests using a simple feature
scaling strategy. Substract the mean m from each feature and divide the result by the
standard deviation s, i.e.

f= f_s(—?)(f) (2.10.1)

where f denotes a vector of some particular feature for all observations, i.e. a column in
the feature matrix.
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Figure 2.10.1: Illustration of how the angle between the decision boundary and the feature axis
can be used to determine the importance of a feature. Inld both angles are approximately the
same. If one feature was removed the classification performance would decline. In[b|on the other
hand, the decision boundary is almost parallel to feature 1. This indicates that feature 1 is more
important than feature 2. Indeed, feature 2 could be removed and the 0-dimensional boundary
would still be able to correctly separate the points.
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Figure 2.10.2: Illustration of scale bias in feature selection. The data is the same as in figure
2.10.14a] except that the numerical range of feature 1 has been increased by a factor 5. This makes
feature I look more important than feature 2, even though the ability to discriminate is unaffected.



2.11 The Forstner interest point operator

Forstner (1986)); Forstner and Giilch! (1987) defines an interest point operator based on
image gradients. Originally, the algorithm was developed for image correspondence prob-
lems. Here it is interesting for two reasons. Firstly, the interest point can be used to find
a centroid for a region within an image, something that is required to compute some of
the features used in this study. The second application is that the error estimate provided
by the method in itself may be utilized as a measure of how radial, or cone shaped the
tree-crown is.

The original work |[Forstner| (1986)); [Forstner and Giilch| (1987) introduces two related
interest point operators, which will be called the tangential interest point operator and the
normal interest point operator. Both operators derive the interest point from the image
gradients as a least-square approximation of an overdetermined linear system composed
of the gradients and positions of the gradients. However, the details when formulating
the linear systems differs between the operators. This work will use the Roberts gradient
defined in equation (2.3.10).

The following steps formulates the normal equation to solve for the tangential interest
point £y = [xo Yol. First, form the vectors of gradients g, and g,, i.e. that contains the
elements of x-wise gradient GG, and y-wise gradient G, respectively. Let

A=lg9. 9] (2.11.1)

Let X and Y denote matrices of the x-wise and y-wise coordinates, respectively, of points
in the image at which respective gradients are computed. Note that because the Roberts
gradient is even in size, these coordinates correspond to points between pixels in the
original image. For example, consider a 5 x 5 original image. Its corresponding Roberts
gradients G, G, are both 4 x 4 and

1.5 1.5 15 1.5 1.5 25 3.5 4.5
Y — 25 25 2.5 25 v — 1.5 25 3.5 4.5
3.5 3.5 35 35|’ 1.5 25 3.5 45
45 45 45 45 1.5 2.5 3.5 45
Next, let
b=xg, +vy9g, (2.11.2)

where x and y contains the coordinates of respective gradients, i.e. elements of & cor-
respond to elements in X, in the same order as elements of g, correspond to elements
in G,. The symbol - denotes the element-wise product. With this setting, the tangential
interest point is defined as the least square solution to the overdetermined linear system

Azy = b, (2.11.3)
and is obtained from solving the systems corresponding normal equation for
A" Azy = A™b. (2.11.4)
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This concludes how the tangential interest point is computed. The difference in the deriva-
tion of the normal interest point is that the normal equation uses the setting

A=lg. —g,], (2.11.5)

and
b=1zg9,—yg,, (2.11.6)

instead of equations (2.11.1)) and (2.11.2).

Given either the tangential- or the normal- interest point z, the least-square error can
be expressed with the following values. Firstly, the residual is defined as

r=>b— Ax,. (2.11.7)

An estimate of the standard deviation corresponding to the least-square error is obtained
from the residual as

rTr
n—2
where n length of r. For a tree-crown, the o that correspond to to the normal interest
point is a measure of the tree-crown radial pattern, and the o, that correspond to the
tangential interest point is a measure of tree-crown cone shape.

5o = (2.11.8)
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3 Materials

The dataset utilized in this study comes from ground measurements and aerial surveying
of the Remningstorp test park in southern Sweden. Remningstorp is situated at 13.626°
longitude and 58.466° latitude (WGS84), and lies 120 m above sea level.

The ground measurements were collected in 2014, by personnel at SLU. The mea-
surements were collected at 261 stands, distributed over a square-grid pattern covering an
area of approximately 10 km?. The relative spacing was about 200 m in both the E-W and
N-S directions. About each stand-point, measurements where taken on trees within a 10
m radius. Tree positions where measured by using a Trimble GeoExplorer 6000 GeoXR
GPS-system, with an accuracy of below 1 m. Of the measured trees, species was noted
for all trees, the diameter was measured for 95% of the trees, and height was measured
for 28% of the trees. In total, measurements where taken on 6493 trees.

The aerial survey was conducted in the 14’th September 2014, by Blom Geomatics.
The surveyed area covered approximately 47 km?, and completely overlapped the area of
ground measurements. The altitude of flight was 430 m above sea level. The plane was
equipped with both a Leica RCD30-camera and a Riegl LMS-Q680i ALS-system.

The camera was equipped with a CH62 camera head and a NAG-D 3.5/50 lens with a
focal length of 53 mm. 8-bit imagery was collected in the RGB bands and co-registered
NIR (wavelength 780 to 880 nm) band. The size of an image was 9000 x 6732 pixels. At
the ground level, each image covered about 305 x 230 m?. The ground sampling distance
is 3.40 cm. The images overlap with 60% in the direction of flight and 30% sideways.

A total of 7218 images were collected. See figure [3.0.1] for an example. Of all these
images, only those that were the nearest neighbour of some stand was utilized, i.e. in
terms if horizontal distance from the camera-centre to the stand-point. Furthermore, im-
ages where the nearest stand are farther away than 50 m were discarded. After these steps,
105 images remained that depicted at least one stand.

The ALS-System had a field of view of 45/60 degrees and emitted rays of wavelength
1550 nm. The system uses a consecutive line scan pattern, and it operates at a scan
frequency of up to 266 kHz. The accuracy of the scanning is expected to be below 0.3
meters in all directions. The resulting scan was a dense point cloud in world-coordinates.

Segmentation was conducted on the ALS data for a 15 cm radius around each stand-
point. The segmentation scheme is described in (Holmgren and Lindberg, |2013)). The
result was produced and delivered by Johan Holmgren in person. A total of 12440 tree-
crowns where segmented. The segments was given in world coordinates.

In order to match the imagery with the segments, relevant images were geo-referenced,
using Terrasolid TerraPhoto. For some images the error in the geo-referencing was large
enough for trees to end up in-between segments, e.g. see figure[3.1.3] The extent of these
errors is unknown.

The resulting data; imagery, segments, and ground measurement for a single stand is
illustrated in figure 3.0.2
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Figure 3.0.1: A sample CIR image from the image dataset. The original size was 9000 x 6732
pixels (before geo-referencing). The NIR, red, and green channels are utilized.
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Figure 3.0.2: Imagery of a sample stand, with segments highlighted, and ground-measured trees
marked as yellow dots. The cyan diamond (near the centre) marks the stand-point. In the raw-data
there is a one-to-many mapping from tree-crown segments to ground-measured trees. As seen in
the image, some segments are empty, while others contain multiple ground-measured trees. Also, a
small offset introduced by the geo-referencing and the viewing geometry is seen. However, in this
particular case it is small and hence not expected to have a significant impact on classification

performance.



3.1 Extraction of single-tree level data

The goal of single-tree level data extraction is to represent the data as a set of trees, where
each tree-crown is assigned a segment, a small image depicting the region covering the
segment, and a single ground-truth species (either spruce, pine, or deciduous).

Firstly, all tree-crown segments that did not overlap a ground measured tree are re-
moved along with segments that belong to a stand that was too far away from any camera-
centre. Secondly, the remaining tree-crown segments are guaranteed to be inside an im-
age and to overlap at least one tree. Thirdly, each tree-crown segment must be assigned a
unique species. Any tree-crown segment that overlaps exactly one ground-measured tree
is assigned the species of that tree. However, if a tree-crown segment overlaps multiple
ground-measured trees, the species is assigned by the following procedure:

1. If any tree within the crown is has a height defined, pick the species of the tallest
tree (with height defined).

2. Otherwise if a diameter is defined for any tree within the crown, pick the species of
the widest tree (that has diameter defined).

3. In case the former steps did not resolve the tree-crown species, discard the crown.

For remaining tree-crowns, a single-tree-image is cut from the CIR channels of the aerial
image containing the segment. The single-tree-image contains the imagery within the
bounding box of the segment, plus a two-pixel-wide border.

In total, 1972 tree-crowns remained after this procedure. Each of these tree-crowns are
assigned a CIR image, a mask corresponding to the segment, and a ground-truth species.
Since the fraction of non-birch deciduous trees was too small for analysis, 72 such trees
were removed. Thus the set of deciduous trees contains only birches. The data that was
used in the analysis of the remaining 1900 tree-crowns is illustrated in the figures [3.1.1]
and [3.1.2] for some sample single-trees. The species distribution is presented in figure
[3.1.4] The size of the single-tree-images ranged from 63 x 47 pixels to 330 x 322 pixels

(see figure[3.1.5)).

3.2 Software

The platform used was 64-bit Ubuntu 14.04 LTS. The solution was implemented in Mat-
Lab R2015a. The SVM implementation from MatlLabs Statistics and Machine Learning
Toolbox was used with default parameters, except for the kernel function that was set to
linear.
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Figure 3.1.1: Sample extracted single tree images. The first row consists of spruces, the second
row consists of pines, and the third row consists of deciduous trees.
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Figure 3.1.2: Same trees as in figure but with masks applied. Features are derived from the
masked (non-blackened) pixels.

Figure 3.1.3: In some cases, the error in the geo-referenced image was so large that trees ended
up in-between segments.
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Figure 3.1.4: Distribution of species in the filtered data. Pine is the class that limits the results of
the study.
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Figure 3.1.5: Distribution of image sizes (number of pixels). The largest single-tree-image is
330 x 322 pixels, and the smallest image is 63 x 47 pixels. The average image is 23415 pixels in
total (rounded), which roughly correspond to 153 x 153 pixels.



4 Methods of feature extraction

Spatial features utilized in this study have been divided into the three categories: second-
order texture, morphological features, and gradient features (derived from the image gra-
dient). Some of these features are based on earlier work in single-tree remote sensing
(STRS), but most of them are more general descriptors in the sense that they can be used
to describe more general objects than just tree-crowns. Also, a mix of old and new (to
STRS) applications of spectral features have been included for reference. Both spatial-
and spectral- features are computed for the masked pixels in each colour channel (near
infra-red (NIR), red, and green), separately. The features are summarized in table 4.0.1]
The total number of distinct features per channel is 122, and the total number of features
is 366.

4.1 Spectral features

Intensity mean, lit-intensity mean, and top intensity are from (Gougeon, 1995). A minor
difference from the original work is that pixels used by lit-intensity mean is determined by
the same channel that the feature is computed for. In the original work, the NIR channel
determined which pixels to use. The features standard deviation and entropy have also
been utilized in earlier work (Meyera et al., [1996; |Leckie et al.,|2003b; Brandtberg, |2002]).
For all spectral measures, all intensity levels were used, i.e. the histograms have 256 bins.
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Table 4.0.1: Complete list of all features that where included in this study. The counts # /chan
is the number of variations of the basic feature (per channel). For example, the variants may
correspond to multiple measures taken from a histogram that is specific for the feature. Another
example is when multiple variants correspond to different parameters to the features, such as
varying step length. The bold-font figures of each respective set is the number of features within
the set. The set of second-order textural features is predominantly larger than the others, because
parameters could be varied to a large extent. The spectral features are described in section
The morphology features are defined in section The gradient features are defined in section
The second-order textural features are defined in section

spectral
name #/chan description
intensity mean 1 The mean intensity.
lit-intensity mean 1 The mean intensity of pixels with an intensity greater than the
mean intensity of all pixels.
top intensity 1 The maximum pixel intensity.
intensity std 1 Estimated intensity standard deviation.
intensity entropy 1  Entropy of pixel intensities. See equation (2.5.5).
intensity skewness 1 Skewness, or standardized third moment of intensity distribution.
See equation (2.5.4).
intensity kurtosis 1 Kurtosis, or standardized fourth moment of intensity distribution.
See equation (2.5.4).
7
morphology
name #/chan description
branchstarness 4 Measures the radialness of the branch-pattern. The branch pat-
tern is extracted from the single-tree imagery using morphologi-
cal techniques. Two different centroids are tested.
granulometry 2 A (grey-level) morphological measure of the grain size distribu-
tion. It aims to capture sizes of leaf or twig bundles in the im-
agery.
6
gradient
name #/chan description
Forstner 2 Error measure for the for the Forstner interest point. See equation
EITR).
gradstarness 2 A measure of gradient diversion relative to a centroid. Similar to
branchstarness.
gradanisotropy 2 Measures the amount of intensity change in principal directions.
gradentropy 1 The entropy of a gradient-based directional histogram.
7
2’nd-order texture
name #/chan description
GLCM 90 Measure derived from the GLCM. All measures in table are
used. Additionally three principal directions are tested and five
different step-lengths.
Haar wavelets 12 A measure that aims to capture the amount of texture at different

scales. The feature is computed for the three sets of difference-
coefficients at three different scales. See equation ({.4.1)).
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4.2 Morphology features

Branchstarness is based on the measure of the radial branch pattern proposed by Brandt-
berg (1997, 2002). Figure illustrates radialness on an intuitive level. The branch-
starness feature is computed from a branch pattern, a binary image of individual branches
(see figure d.2.4). The branch pattern is extracted from a tree-crown image by applying
this sequence of processing steps:

1. Apply an edge filter and threshold.

2. Skeletonize edges.

3. Prune the skeleton.

4. Remove branch points from the pruned skeleton.

5. Remove isolated pixels, with no 8-connected neighbours.

These steps are illustrated in the figures [4.2.3|and 4.2.4], the latter that shows the masked
end result. In the first edge filter step the original tree-crown image is filtered by the
Laplacian filter Lg defined in equation (2.3.7). Of the filtered result, positive pixels are
kept. In summary,

Xedges = (X  Lg) > 0, 4.2.1)

where the output edge-image X445 1S a boolean image such that a pixel is set to true if it
belongs to an edge, and zero otherwise. An example edge image is seen in figure [4.2.3b]
The next step extracts the morphological skeleton (see figure[d.2.3¢)), that is just one pixel
thick (Gonzalez, 2008, chapter 9.5.7, 11.1.7). Many algorithms for skeletonization exists
which produce similar results. In this work, skeletons are generated by MatlLabs function
bwmorph(). The next step applies morphological pruning to prune off small branches
known as parasitic components from the skeleton (Gonzalez, 2008, chapter 9.5.8). The
length of parasitic components to remove is set to two pixels. The fourth step removes
branch points from the pruned skeleton (once again using bwmorph()). After this step, the
image will consist of isolated one-pixel-thick blobs called branches (see figure {.2.3¢).
The fifth and final step removes isolated pixels.

Once the branch pattern is extracted, each branch is analysed independently of the
others. For each branch, the centre of mass is computed. Also the major- and minor-axis
and respective major- and minor radii are all computed by principal component analysis
on the n-normalized covariance matrix of pixel positions that belong to the branch. For
each branch, the angular diversion relative to the tree stem is computed. This requires
a centroid for representing the stem, or centre of the branch pattern. Formally, angular
diversion is defined as the smallest angle between the line passing through the centroid
and the branch centre-off-mass and the other line that that is major axis of the branch.
This is illustrated in figure 4.2.2] Note that the angular diversions will be in the interval
[0°,90°]. As a final filtering step, branches that display insufficient directionality are
removed. This is achieved by removing branches where the fraction of the major and
minor radii is less than 1.5. Branchstarness is evaluated for two different centroids. The
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first version uses the centre of mass of the masked branch pattern as seen in figure 4.2.4]
The second version uses the tangential Forstner interest point defined in section [2.11]

After each branch has been processed the angular diversions are accumulated in a
histogram, weighted by the major radius of the corresponding branch. The histogram h
has 9 bins, each corresponding to 10° intervals. Finally, the histogram is normalized so
that the sum of its elements equals 1. Two features are extracted from this histogram. The
first is the raw moment, defined as

M(h) =" ah(x). (4.2.2)

The second measure is the entropy of the histogram, defined in equation (2.5.5)).

AL O
AT ==

(a) Radial (b) Not radial

Figure 4.2.1: Illustration of radialness, which branchstarness aims to capture.

Figure 4.2.2: lllustration of angular diversion 6. The big dot is the centroid, the red lines are the
line through the centroid, and the centre of mass of the branch, and the major axis of the branch,
respectively. The smaller angle between the two lines is the angular diversion 6.
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(d) Pruned skeleton (e) Removed branch points  (f) Removed isolated pixels

Figure 4.2.3: Steps for extracting the branch pattern.

Figure 4.2.4: Masked result of branch extraction algorithm. Branchstarness is derived from this
pattern and from a centroid.
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Figure 4.2.5: lllustration of what granulometry captures. The first figure has a low granulometry
moment compared to the others because the grains are small. The second figure has a higher
moment because the grains are larger. Both first figures have a low entropy because all grains are
of the same size. The third figure has grains of different sizes and therefore is of higher entropy
than the other examples.

The granulometry feature aims to capture the grain size distribution in the tree crown
(Gonzalez, 2008, p. 674). The concept of granulometry is illustrated in figure §.2.5] A
granulometric histogram is constructed by accumulating the total image intensity after
applying morphological erosion with disk shaped structuring elements of various sizes.
For each histogram bin, a particular structuring element radius is used, ranging from 1 to
35. To avoid ambiguity, the size of structuring-element-matrix corresponding to the disk
will have the size 2r + 1 x 2r 4 1, so that its centre always correspond to the centre of
a pixel. The histogram is then normalized. The granulometry features consist of the raw
moment and entropy of the granulometric histogram.
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4.3 Gradient features

Gradient features are derived from the image gradient. This set of features therefore en-
compasses the Forstner features introduced in section[2.11] Specifically, the two Forstner
features are defined as the oy’s of equation (2.11.8]), corresponding to the tangential in-
terest point and the normal interest point. All the remaining features introduced in this
section utilizes the Sobel gradient, defined in equation (2.3.12)) (Note that Forstner cen-
troids are still computed using the Roberts gradient). The respective gradients are denoted
G, and G, (see equation[2.3.8)).

Gradstarness is similar to Branchstarness that was introduced in the previous section.
The difference is that in Gradstarness, the gradient replaces the morphological branch
pattern. In Gradstarness, the angular diversion at a specific pixel at [z y]” is the diver-
sion of the gradient direction d,; (see equation and the vector from the centroid
to the pixel [z y]T — [z wo]'. When accumulated in the histogram, the diversions
are weighted by their corresponding magnitudes m;;’s (see equation[2.3.14). Consecutive
steps are similar to Branchstarness. The histogram raw moment and histogram entropy
constitute the specific Gradstarness features, and Gradstarness uses the Forstner tangential
centroid.

Gradanisotropy aims to capture the difference in the amount of intensity change be-
tween the direction that has the most- and least- intensity change, respectively (See figure
M.3.1] for an example). It is computed by principal component analysis on the gradients.
Initially, the covariance matrix centred at (0,0) (i.e. the mean is set to be zero in the
x and y direction) is computed for the gradient values. From the covariance matrix the
eigenvalues \;, Ay such that A\; > \,, are obtained from the singular value decomposi-
tion (svd). The anisotropy measure is then defined as A\5/);. Note that this means that
smaller values of the feature correspond to greater anisotropy. Another measure that is
also included in Gradanisotropy is the non-systematic anisotropy measure. This measure
attempts to remove systematic intensity change in the image (i.e. one end of the image
being lighter than the other). This is achieved by subtracting the x-wise averages from G,
and the y-wise averages from G, before forming the covariance matrix.

(a) Isotropic (b) Anisotropic

Figure 4.3.1: Illustration of what the anisotropy feature aims to capture. In @ the change in
intensity is similar over all principal directions of the image. In[D| the change is larger column-
wise, than it is row-wise. The anisotropy feature of the first image is 1, indicating that it is isotropic.
The feature of the second image is 0.398, which indicates anisotropy.

The Gradentropy feature is computed from a bidirectional histogram of gradient di-
rections. Bi-directionality is achieved by reversing every gradient with an angle outside
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the interval [—, 7), relative to the x-axis. After the reversal step, the gradients are accu-
mulated into a directional histogram, weighted by their magnitude. The histogram uses
twelve bins, each corresponding to 15°. From this histogram, the entropy is extracted.

4.4 Second-order texture

Two approaches to second-order textural features are tested. Features derived from the
GLCM and features derived from Haar wavelet coefficients.

For a normalized and bi-directional GLCM (see section [2.6), all six features defined
in table [2.6.1] are included. Additionally, these features are computed for the step-lengths
S ={1,2,4,8,16}, in three principal directions: horizontally, vertically, and diagonally.
That is the offsets are O = {(0, s), (s,0), (s, s)}, forall s € S.

The measure utilized for wavelets aims to capture the amount of texture in principal
directions. For an arbitrary level, let A denote the matrix of approximation coefficients
and D any of the three sets of difference coefficients (horizontal, vertical, or diagonal).
The feature is defined as

(4.4.1)

A minor difference with the introduction to wavelets provided in section is that the
. 1 1 . . 1 1
non-orthogonal wavelet basis { [1] , [_1} } is used instead of {\% [1] , {\% {_1} }. The

feature is computed for the first four levels of decomposition, and for all three sets of
difference coefficients.
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S Experiments

The objective of this study is to evaluate a large set of spatial features for the three
species tree-crown classification problem, and to investigate what spectral information is
required for classification with spatial features. Both of these issues are investigated in
experiment 1 that uses feature ranking to establish the relative importance of each feature.
The redundancy of each feature is also investigated by successively removing the worst-
feature (based on the ranking) and estimating the loss of the n’-best features subset. To
establish if spectral features are necessary, the experiment is re-run on different subsets
of features. In particular, the loss from removing spectral features and colour channels is
measured by this scheme.

In experiment 1, the best-features are selected from all data, including the test data
used to estimate classification performance. This approach is sound in the sense that the
goal is to find the features that best describe the whole dataset, but introduces bias in the
sense that the performance results will not correspond to a real situation. The remedy is to
rank features on training data exclusively. The purpose of experiment 2 is to estimate the
unbiased classification performance that is expected in practice, using the best features.
The unbiased result is a complement to experiment 1.

Experiment 3 asserts the feasibility of the voting procedure. Given this experiments
result and the result from experiment 2, it can be assessed if the classification method
chosen for this study was feasible.

All the following experiments uses algorithm (3)) with the normalization scheme de-
fined at the end of section to rank all features for all three classification pairs.

5.1 Classification with multiple classes

The classification task involves the three classes spruce, pine, and deciduous trees. Be-
cause the SVM is a binary classifier it must be extended handle more than two classes.
This study takes the one-versus-one approach, because it is simple, and also because the
result of one-versus-one classification is more informative than the result of one-versus-all
classification. That is, the one-versus-all method would not be able to detect if the features
that discriminates class A from class B are different from the ones that discriminate class
A from class C. In order to aggregate the result from the three partial-SVMs, the voting
scheme defined in section [2.9.1]is used with the addition that for unresolved cases (where
each tree class obtains one vote) the class is instead determined by the partial-SVM that
maximizes the absolute value of the decision function.

Even though the entity consisting of the partial-SVMs and the voting scheme will be
referred to as a multi-SVM, the features used will be different for different partial-SVMs.
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5.2 Normalized cross-validation

In the experiments that follows, classification performance is evaluated using a normal-
ized version of cross validation described in section The difference is that in each
fold, the training data X;,.;, is normalized using equation The test data X, g, is
also normalized, but with the means and standard deviations from the columns of X,,,,.
The reason for conducting this normalization is to account for the normalization that is
applied when ranking the features (see section [2.10.1)).

In all experiments, 10-fold cross-validation is used.

5.3 Experiment 1: Identifying the best features

Given the m X n feature matrix X (rows correspond to distinct observations and columns
correspond to distinct features) and the ground truth vector of m class labels y. For
number of best-features n’ (determined by ranking) from 1 to n, use normalized cross-
validation on a multi-SVM (see sections and [5.2)) to evaluate the classification per-
formance of each n'-best features subset. The class-normalized loss (equation is
utilized as the performance metric. It is computed from the compound predictions pro-
duced by cross-validation, i.e. not for each fold (see section [2.8.3]for explanation).

An important detail is that the same cross-validation partitions is used in the evaluation
of each n/-best-features subset. The reason for this is to remove noise caused by the
differences in the partitions.

5.3.1 Datasets

The experiment is re-run, first for two different sets of observations, then for three differ-
ent sets of features. The purpose of the first two datasets is to obtain general results on
which features are best, but also to investigate which subset of observations is the most
suitable in successive runs. The first set of observations named ALL OBSERVATIONS
incorporate all the 1900 tree-crowns available. The second set of observations named
EQUAL FRACTIONS includes 825 randomly chosen, but distinct tree-crowns such that the
number of observations of each class is the same, i.e. 275 tree-crowns of spruce, pine, and
deciduous trees, respectively. The results are compared in order to determine which of the
following factors that affect the classification performance the most. (1) To have unequal
class fractions leading to bias for the most probable class, or (2) to base the results on less
observations. Note that for EQUAL FRACTIONS, the class-normalized classification loss
is equivalent to the simpler classification loss described in equation (2.8.7).

Once the set of observations yielding the best performance is determined, the algo-
rithm is run for the following subset of features, in order to determine what spectral infor-
mation is necessary:

e Spectral features.
e Spatial features.

e Spatial features in the red channel.
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Table 5.3.1: Average amount of texture for all observations at different channels and scales. Val-
ues were computed using the wavelet feature defined in equation (A.4.1)). At each level, the texture
components corresponding to respective set of loss coefficients (i.e. horizontal, vertical, and diag-
onal) have been combined. The red channel displays the largest amount of texture on all levels of
wavelet-decomposition.

level 1 level 2 level 3 level 4
NIR 0.0292 0.0541 0.0929 0.1412
Red 0.1613 0.2050 0.2553 0.3049
Green | 0.0979 0.1519 0.2072 0.2566

The reason that the red channel was selected is that it maximized the amount of texture
over all tree-crown observations (see table[5.3.1)).

5.4 Experiment 2: Nested feature selection

For a fixed number of best features n’/, normalized cross-validation with a multi-SVM is
used to produce the confusion matrix. In this experiment, the features are ranked on the
training data inside each fold of cross-validation. For reference, the cross-validation is
also run with feature selection from all data (like in experiment 1) for the same number
of features n’. By taking the difference in the respective losses, the bias can be estimated.

5.5 Experiment 3: Feasibility of the voting procedure

For n’ best features, normalized cross-validation is run as in experiment 1 (with feature
ranking on all data), but instead of measuring performance the votes are counted for each
class and for each observation. The votes are used to establish the fraction of resolved
elections where the predicted class received the majority of the votes. The compound
fraction of resolved predictions is the total fraction of resolved election. Partial fractions
of resolved predictions are computed for each class as the fractions of resolved elections,
were the corresponding observation belonged to the particular class in the ground truth.
Note that the partial fractions does not take into account if the correct class was elected.
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6 Results

6.1 Experiment 1

The results of running experiment 1 on the two different sets of observations ALL DATA
and EQUAL FRACTIONS, is seen in the figures [6.1.T]and [6.1.2] respectively. Figure[6.1.2]
reveals that the compound loss is lower for the EQUAL FRACTIONS set of observations,
except at the left most part of the tail (number of best-features is n’ > 200). Therefore,
the remaining runs of this experiment and the successive experiments utilizes the EQUAL
FRACTIONS set of observations.

The top-30 features for the respective classification pairs; spruce-versus-pine, spruce-
versus-deciduous, and pine-versus-deciduous, are listed in the tables [6.1.1] [6.1.2] and
[6.1.3] respectively. All of these lists are dominated by second-order textural features, in
different principal directions and at different scales. The number of spectral features on
the lists varies between two and six. Of the three classification pairs, the two involving
deciduous trees has more spectral features on the list than spruce-versus-pine. Spectral
features dominates the top-3 lists.

The compound performance of each feature subset listed in section [5.3.1] is seen in
the figures[6.1.3|and [6.1.4] The figures reveal a penalty when the number of best-features
isn' < 35, e.g. for n’ = 20 the loss of the spatial feature set is 2.9 p[{g] higher than the
corresponding loss for all features. For greater n > 35 the loss-plots of the two feature
sets coincide. The first time they intersect is at n’ = 33. The set of spatial features that
are limited to a single channel stands out as having the highest loss. At n’ = 20 the loss
corresponding to that set was 13.0 pp higher than the loss corresponding to the set of all
features.

The performance of the partial classification when using only spatial features is seen
in[6.1.5] and the respective top-30 spatial features list is found in tables [6.1.4] [6.1.5] and
[6.1.6] For spatial features only, a similar mix of wavelet and GLCM features dominates
the top-30 lists as for using all features. A difference is that the Forstner features for
spruce-versus-pine climbed to positions near five. Also, for pine-versus-deciduous clas-
sification, the Forstner features appears near the bottom of the list.

8Percentage points (pp) is the unit of arithmetic difference between percentages. For example, the
difference between 1% and 5% is 4 pp.
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Figure 6.1.1: Result of experiment 1, using the ALL DATA set of observations. The plot shows the
biased loss for for all n'-best features subsets. If the plot is read from right to left, each decrement
of n' correspond to removing the worst features determined by feature ranking. All plots within
the figure displays J-curves. Removing features initially decreases the loss because the influence
of overfitting lessens. In the flat sections, e.g. for n' € [100, 175], features are redundant, so that
removing the worst features has little effect on the loss. However, when the number of features is
low, n' < 26, a steep increase in loss is seen, because each feature adds significant information to
the classifier. The height of respective plots illustrates the difficulty of classification, partials and
compound. Spruce-versus-pine stands out as being the hardest pair to classify. The compound
loss is higher than the partial losses, because in general, discriminating three classes is harder
than discriminating two classes.
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Figure 6.1.2: Result of experiment 1, using the EQUAL FRACTIONS set of observations. Addi-
tionally, the compound result using ALL DATA is included for comparison (from figure [6.1.1).
Clearly, the compound loss using EQUAL FRACTIONS is below that of using ALL DATA (except in
the n' > 200 portion of the tail), as seen in the height of the plots. Also, for EQUAL FRACTIONS

the losses of partial classification coincides. This suggests that all species are similarly difficult to
discriminate.
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Table 6.1.1: A result from experiment 1. Best features for spruce-versus-pine classification using
the EQUAL FRACTIONS set of observations. k denotes the level of wavelet-decomposition and q
denotes the GLCM-offsets. The table is dominated by second-order textural measures at different
scales and in different principal directions. The only spatial feature on the list that is not a measure
of texture is the Forstner feature. The two spectral features on the list are highlighted in grey.

rank channel feature

1 Red intensity mean

2 NIR GLCM-contrast, ¢ = [8, 0]

3 NIR wavelet-horizontal £ = 1

4 NIR GLCM-contrast, ¢ = [0, 2]

5 NIR wavelet-vertical k = 2

6 NIR skewness

7 Red GLCM-energy q = [8, 0]

8 Red GLCM-homogeneity ¢ = [8, 0]

9 NIR GLCM-correlation ¢ = [1, 0]
10 Green  GLCM-contrastq = [0, 1]
11 Red GLCM-contrast ¢ = [0, 4]
12 Green wavelet-vertical £ = 1
13 Green wavelet-diagonal £ = 1
14 Red GLCM-contrast ¢ = [8, §]
15 NIR GLCM-correlation ¢ = [2, 0]
16 Green  GLCM-correlation ¢ = [8, §]
17 Green  GLCM-contrast ¢ = [4, 0]
18 NIR GLCM-contrast g = [0, 1]
19 NIR GLCM-contrast ¢ = [4, (]
20 NIR wavelet-diagonal £ = 1
21 NIR GLCM-homogeneity g = [0, 16]
22 Red GLCM-contrast ¢ = [0, §]
23 Red GLCM-homogeneity ¢ = 16
24 NIR wavelet-horizontal £ = 2
25 Green forstner-tangential
26 Red forstner-normal
27 Green wavelet-horizontal £ = 1
28 Green wavelet-horizontal £ = 4
29 Red wavelet-horizontal £ = 4
30 Red wavelet-vertical k = 2
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Table 6.1.2: A result from experiment 1. Best features for spruce-versus-deciduous classification
using the EQUAL FRACTIONS set of observations. The mix of spatial features is similar to table
[6.171] except that the Forstner features do not appear. In total, six spectral features appear on the
list.

rank channel feature
1 Red lit-intensity mean
2 Green lit-intensity mean
3 Red intensity mean
4 NIR GLCM-contrast ¢ = [2, 0]
5 Red GLCM-contrast g = [1, 1]
6 Red GLCM-contrast ¢ = [0, 4]
7 Red GLCM-contrast ¢ = [0, 16]
8 Red GLCM-homogeneity g = [4, 4]
9 Red GLCM-homogeneity ¢ = [1, 0]

10 Green  GLCM-max(P)q = [16, 0]
11 Green  GLCM-max(P)gq = [1,0]
12 NIR  GLCM-max(P)q = [0,2]
13 NIR GLCM-max(P) q = [0, 8]
14  Green intensity entropy

15 Green intensity standard deviation
16 Green  GLCM-max(P)q = [1,1]
17 Red intensity entropy

18 Green  GLCM-entropy q = [16, 16]
19 Red wavelet-diagonal k£ = 4

20 Green wavelet-diagonal k£ = 4

21 NIR GLCM-correlation ¢ = [1, 0]
22 Red GLCM-correlation 1 = [4, 4]
23 Green  GLCM-max(P) ¢ = [4, 4]

24 NIR GLCM-contrast ¢ = [4, 4]
25 NIR wavelet-diagonal £ = 3

26 NIR wavelet-horizontal k = 3

27 Green  GLCM-max(P) g = [0, 1]

28 Green  GLCM-energy q = [16, 0]
29 NIR GLCM-energy q = [8, 0]

30 NIR GLCM-contrast ¢ = [4, 0]
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Table 6.1.3: A result from experiment 1. Best features for pine-versus-deciduous classification
using the EQUAL FRACTIONS set of observations. The composition of features is similar to table

12
rank channel feature
1 NIR GLCM-homogeneity ¢ = [4, 0]
2 NIR GLCM-homogeneity ¢ = [8, 0]
3 Green lit-intensity mean
4 Red lit-intensity mean
5 NIR wavelet-diagonal k = 3
6 NIR GLCM-homogeneity ¢ = [2, 0]
7 NIR GLCM-contrast ¢ = [8, 0]
8 Red intensity mean
9 Green  GLCM-homogeneity ¢ = [1, 0]
10 NIR intensity top
11 NIR GLCM-correlation g = [2, 0]
12 Green intensity mean
13 Green  GLCM-correlation g = [0, 1]
14 NIR GLCM-homogeneity ¢ = [2, 2]
15 Green  GLCM-entropy q = [16, 0]
16 NIR GLCM-entropy g = [0, 1]
17 Green  GLCM-homogeneity ¢ = [16, 16]
18 Green  GLCM-homogeneity ¢ = [4, 4]
19 NIR GLCM-correlation ¢ = [4, 4]
20 Red GLCM-energy q = [16, 16]
21 Red GLCM-correlation ¢ = [0, §]
22 Green  GLCM-contrast ¢ = [16, 16]
23 Green  GLCM-contrast ¢ = [0, 16]
24 Red GLCM-contrast g = [0, 1]
25 Green  GLCM-contrast ¢ = [0, 4]
26 Red wavelet-diagonal k = 4
27 Green wavelet-diagonal k£ = 4
28 NIR GLCM-contrast ¢ = [16, 16]
29 Green  GLCM-homogeneity ¢ = [16, 0]
30 NIR GLCM-contrast g = [1, 0]
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Figure 6.1.3: A result from experiment 1. Compound results for different subsets of features. The
plot labelled “all’ refers to the compound loss seen in figure [6.1.2} The results are based on the
EQUAL FRACTIONS set of observations. The reason that the plots ends at different number of
best-features 1’ is the different sizes of respective feature subsets. Spatial features limited to the
red channel stands out as the worst set of features. If the number of best-features is sufficiently

large, n' > 35, the loss when spatial features are used coincides with the loss when all features
are used.
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Figure 6.1.4: Same result as in figure but zoomed in on on the part where at most n' = 50
features are used. This highlights the behaviour before the performance of the n'-best spatial
features coincides with the performance of n’-best features (from all categories).
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Figure 6.1.5: A result from experiment 1. Partial and compound performance when only spatial
features are utilized. The result is based on the EQUAL FRACTIONS set of observations. The

performance result is similar to that in figure[6.1.2] However, a minor difference is that the partial
results are more spread for small numbers of best-features (n’ < 20).
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Table 6.1.4: A result from experiment 1. Best spatial features for spruce-versus-pine classification
using the EQUAL FRACTIONS set of observations. The mix of second-order texture is similar to
when all features where included (see table [6.1.1). One difference is that the Forstner features
have climbed in position from 25 to 5.

rank channel feature
1 NIR wavelet-vertical k = 3
2 NIR GLCM-contrast ¢ = [0, 2]
3 NIR GLCM-contrast g = [8, 0]
4 NIR wavelet-horizontal k = 2
5 Green forstner-tangential
6 Red forstner-normal
7 Red GLCM-max(P) ¢ = [4, 4]
8 Green  GLCM-homogeneity ¢ = [0, 2]
9 Red GLCM-homogeneity ¢ = [8, 0]
10 Red GLCM-contrast ¢ = [8, §]
11 Green  GLCM-contrastq = [0, §]

12 NIR GLCM-correlation ¢ = [2, 0]
13 Green  GLCM-correlation ¢ = [8, §]
14 NIR GLCM-contrast g = [4, 0]
15 Red wavelet-vertical £ = 1

16 Red wavelet-diagonal k = 2

17 NIR GLCM-homogeneity ¢ = [2, 0]
18 NIR GLCM-max(P) g = [4, 0]

19 Green  GLCM-correlation ¢ = [0, 1]

20 NIR  GLCM-max(P)q = [0, 16]

21 NIR GLCM-homogeneity g = [0, 16]
22 Red GLCM-correlation ¢ = [0, 16]
23 NIR GLCM-correlation g = [4, 0]

24 NIR GLCM-homogeneity ¢ = [8, 0]

25 Green  GLCM-contrast g = [0, 2]
26 Red GLCM-contrast ¢ = [0, 4]
27 Green  GLCM-contrast g = [1,0]
28 NIR wavelet-horizontal k = 1

29 NIR wavelet-diagonal £ = 1
30 Green  GLCM-contrastq = [0, 1]
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Table 6.1.5: A result from experiment 1. Best spatial features for spruce-versus-deciduous clas-
sification using the EQUAL FRACTIONS set of observations. The mix of second-order texture is
similar to when all features where included (see table[6.1.2).

rank channel feature
1 Red wavelet-vertical £ = 4
2 Green wavelet-vertical £ = 4
3 Red GLCM-correlation g = [4, 4]
4 Green  GLCM-correlation g = [4, 0]
5 NIR GLCM-contrast g = [4, 0]
6 Red GLCM-contrast ¢ = [16, 0]
7 Green  GLCM-contrast ¢ = [8, 0]
8 Red GLCM-homogeneity ¢ = [1, 0]
9 Green  GLCM-homogeneity ¢ = [8, 0]
10 Green GLCM-max(P) ¢ = [16, 0]
11 Green  GLCM-max(P)q = [1,0]
12 NIR GLCM-contrast ¢ = [4, 4]
13 NIR GLCM-homogeneity ¢ = [0, 4]
14 Red wavelet-diagonal £ = 3
15 Red wavelet-horizontal k£ = 1
16 Green  GLCM-homogeneity ¢ = [0, §]
17 Green GLCM-max(P) ¢ = [8, 0]
18 Red GLCM-homogeneity ¢ = [4, 4]
19 Red GLCM-entropy ¢ = [2, 0]
20 Green  GLCM-entropy q = [16, 16]
21 NIR GLCM-contrast ¢ = [2, 0]
22 NIR GLCM-correlation ¢ = [1, 0]
23 NIR GLCM-energy g = [16, 16]
24 NIR GLCM-energy q = [0, §]
25 NIR GLCM-homogeneity ¢ = [8, 0]
26 Green  GLCM-max(P) ¢ = [1,1]
27 Red GLCM-entropy q = [4, 4]
28 Green  GLCM-homogeneity ¢ = [16, 0]
29 Green  GLCM-correlation g = [0, §]
30 Red GLCM-correlation g = [0, 16]
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Table 6.1.6: A result from experiment 1. Best spatial features for pine-versus-deciduous using
the EQUAL FRACTIONS set of observations. The mix of second-order texture is similar to when
all features where included (see table [6.1.3)), except that the Forstner features appears near the
bottom of the list.

rank channel feature

1 NIR GLCM-homogeneity ¢ = [2, 0]

2 NIR GLCM-homogeneity g = (8, 0]

3 Green  GLCM-entropy q = [16, 0]

4 Red GLCM-entropy q = [4, 0]

5 NIR GLCM-homogeneity ¢ = (2, 2]

6 NIR GLCM-homogeneity ¢ = [8, 8]

7 NIR GLCM-contrast ¢ = [8, 0]

8 Green  GLCM-correlation g = [0, 1]

9 NIR GLCM-correlation g = [4, 0]
10 Red GLCM-homogeneity ¢ = [1, 0]
11 NIR GLCM-contrast g = [1, 0]

12 Red GLCM-homogeneity g = [0, 4]
13 Green  GLCM-correlation ¢ = [0, 16]
14 Red GLCM-correlation g = [0, §]

15 Green GLCM-energy q = [16, 16]

16 NIR GLCM-homogeneity ¢ = [4, 0]
17 Green  GLCM-entropy q = [8, §]

18 Red GLCM-entropy q = [8, 0]

19 NIR wavelet-diagonal k£ = 3

20  Green wavelet-diagonal k£ = 4

21 Red wavelet-diagonal k£ = 4

22 NIR GLCM-correlation ¢ = [4, 4]
23 Green  GLCM-contrast g = [16, 0]

24 NIR forstner-normal
25 Red forstner-normal
26 Green forstner-tangential

27 Green  GLCM-entropy q = [16, 16]
28 Green wavelet-vertical k = 4

29 Red wavelet-vertical k = 4

30 Green GLCM-homogeneity ¢ = [4, 4]




6.2 Experiment 2

For n’ = 30 best features, the confusion matrices for biased- and unbiased- classification
are presented in table The biased loss (features selected on all data) was (5, =
17.6% and the unbiased loss (features selected from training data) was I3y = 23.9%.
Thus, the bias correspond to of bsy = l30 — l5, = 6.3 pp. The experiment was also run
for the set of n’ = 80 best-features. The corresponding figures where [, = 14.8% and
lso = 28.1%. The biased performance increased, but the unbiased performance degraded
so that the bias increased to bgy = 13.3 pp.

Table 6.2.1: Result of experiment 2. Confusion matrices for classification with n' = 30 best
features selected from all data (jd) and selected from training data (b)), respectively. The row-wise
class-labels indicate the ground truth class label, and the column-wise class-labels (marked with
*) indicate the predicted class-label. The last column shows the fraction of correctly classified
observations per class. The bold-font value at the bottom correspond to the total fraction of
correctly classified labels. The unbiased classification accuracy is 6.3 pp lower than the biased
classification accuracy. Also, the differences in classification accuracy among the different classes
increased somewhat.

(a) Biased performance

spruce* pine* deciduous® | % correct

spruce 227 26 22 82.5
pine 33 226 16 82.2
deciduous 24 24 227 82.5
824

(b) Unbiased performance

spruce* pine* deciduous® | % correct

spruce 217 26 32 78.9
pine 42 201 32 73.1
deciduous 33 32 210 76.4
76.1

6.3 Experiment 3

99% (rounded) of the elections were resolved, i.e. not ties. This (rounded) figure did not
differ between species.
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7 Discussion

Interestingly, the top-features lists (presented in the tables [6.1.1] [6.1.2] and [6.1.3)) are
dominated by the textural measures based on second-order statistical measures; GLCM
and Haar wavelets. This is the case for both the classification results utilizing all features,
and for the results utilizing spatial features only (tables [6.1.4] [6.1.5] and [6.1.6). It can
also be seen that a wide range of scales and principal directions are utilized by these two
approaches to textural features. In fact, for the GLCM features, each step-length and
each principal direction occurs at least once on every one of the top-30 lists. The various
scales suggests that multiresolution techniques (Mallat, |1989)) can effectively describe the
tree-crowns in the sense that each scale adds relevant information.

The Forstner features stands out as the only spatial features on the top-30 lists that
is not a second-order statistical measure of texture. The success of the Forstner features
relative to the other gradient measures is somewhat surprising because the features are
derived from the same data, namely the image gradient. A possible explanation is that
the Forstner features takes into account the location where each gradient is computed.
In contrast, the other gradient features are first-order statistical measures of the gradients
that only takes into account what gradients appear in the imagery.

The top-three features of the lists are dominated by spectral measures of the intensity
mean. It is therefore surprising to find that the removal of all spectral features from the
classification did not impair classification performance substantially. If sufficiently many
best-features are used (n’ > 35), the performance gap between the spatial feature subset
and the full set of features is negligible (see figures [6.1.3| and [6.1.4). For smaller best-
feature sets (n’ < 35), the penalty from excluding spectral features is modest (see figure
6.1.4), e.g. 2.9 pp at n’ = 20. This penalty can be dealt with by adding yet more spatial
features, i.e. by increasing n/. Another result (see figures [6.1.3| and [6.1.4)) is that the
removal of all but one spectral channel from the set of spatial features causes a severe
drop in classification performance, e.g. utilizing n’ = 20 features, the performance drop
was 13.0 pp for compound classification.

Utilizing the set of n’ = 30 best-features, the unbiased classification loss of the com-
pound classification is l30 = 23.9%, or expressed in classification accuracy 76.1%. This
figure is similar to the accuracy of 76.7% achieved in [Erikson| (2004), and is higher than
the accuracy of 67% achieved in Brandtberg| (2002).

7.1 Conclusion

The objective of this study is to systemically evaluate a large set of spatial features for
tree-crown classification. The result shows that textural measures based on second-order
statistics, is the most important class of spatial features among those evaluated in this
study. Of these features, both wavelet- and GLCM- features contributes significantly to
classification. The ability of wavelets and GLCM to analyse texture at multiple scales is
believed to be an important reason of their success.

The objective is also to compare spectral and spatial features, and to investigate what
spectral information is necessary. For a small feature set, classification performance ben-
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efits from including both spectral and spatial features. However, if sufficiently many fea-
tures are used, the classification can be conducted based on spatial features only. On the
other hand, the multispectral information from utilizing multiple spectral bands is found
to be necessary, even for spatial features.

The method of classification turned out to be useful for the particular application. The
classification accuracy (76%) is comparable to earlier results. Also, experiment 3 verifies
that the voting scheme is able to resolve the large majority of the predictions (99%).

7.2 Limitations

This study has a number of limitations that arise from problems with the dataset utilized.
Errors in geo-referencing causes an offset of the trees relative to segments. In some cases,
the offset is so large that tree-crowns end up in-between segments. These errors are likely
to have a negative impact on classification performance. The extent of in-between seg-
ments, and thus their effect on classification performance, is unknown.

A more subtle consequence of using ALS-derived segments is that tree-crowns that
would not be detected by an image-based segmentation scheme are included. In particular,
trees in the lower canopy that are shadowed by their neighbours may still be distinguish-
able in the height model (see figure [7.2.1). In general, this is believed to have a negative
impact on classification performance because image based features cannot be expected to
work if the object (in this case tree-crown) cannot be clearly distinguished in the image.
Another possibility is that trees in the lower canopy may be particularly likely to belong
to a certain species. In real forest stands, it is common that the canopy is layered such that
different species dominates different canopy heights. If there is a strong height-species
correlation, the classification performance may improve because dark tree-crown-imagery
can be assumed to belong to a specific species. This is however not believed to be the case
for the dataset utilized in this study, because the trees come from small sampled stands,
scattered over a large area.

(a) image (b) height model

Figure 7.2.1: An example of a tree that is segmented from the ALS data, but that is unlikely to
be segmented by an image based method. The tree in (d) correspond to the small, but clearly
distinguishable blob at the centre of the height model in (b). The tree is significantly shorter and
smaller than its neighbours, and therefore is shadowed in the optical imagery.

The trees classified in this study are limited to be no farther than 60 meters away
from the camera centre, horizontally. For multispectral features, the differences in sun
illumination and viewing geometry for trees at different position within the image is a
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known problem (Puttonen et al., 2009; Korpela et al., 2011)). These differences are also
likely to cause similar problems for classification based on spatial features. In a real
situation, classification would be conducted on a larger portion of the trees within the
image. In such a situation the effect of sun illumination and viewing geometry is more
prominent, and consequentially the reported classification accuracy in this study may be
overestimated due to this distance limit.

7.3 Future work

To determine if the second-order textural measures are practical for real forest inven-
tory applications, the next step is to investigate what classification performance can be
achieved from the features. Firstly, the method should be evaluated using an image based
segmentation scheme (as would be used in practice), e.g. the one utilized in [Erikson
(2004), or one from Brandtberg and Warner (2006). Furthermore, because the number of
features utilized in this study is large and because the effect of overfitting is believed to be
more prominent than seen figure [6.1.2] it is feasible to apply methods of dimensionality
reduction (decreasing the number of dimensions in the feature vector) in excess off the
feature selection. A simple approach that has been utilized in tree-crown classification
literature is principal component analysis (e.g. in Meyera et al., [1996; Brandtberg, |2002;
Orka et al., 2007).

The optimal number of features to use could not be estimated, because of the bias
problem. It is therefore a topic for future work to implement a version of experiment 1
that computes the unbiased losses.

Important feature classes that were excluded from this study were geometric features,
i.e. features that describe the shape, area or boundary of the tree crown, or regions within
the tree-crown. Because this class of features is believed to add non-redundant infor-
mation over the second-order texture, it should be included in future work. This set of
features was excluded from this study on the basis that the shape of the ALS-derived
segments does not correspond to the shapes of the image-derived segments that would
be used in a real situation. In tree-crown classification literature, examples of work that
utilizes geometric features are found in |[Brandtberg (1998, 2002); Erikson! (2004).

In this study, performance was evaluated in terms of classification accuracy. Another
kind of performance that is of high importance for practical applications is robustness. A
robust tree-crown classifier is expected to work under different environmental conditions
affecting the dataset (e.g. in summer and in fall), and to tolerate variations within the same
dataset. A particularly important problem with multispectral features is that differences
in sun-illumination and viewing geometry at different locations within the image cause
tree-crowns to be spectrally different from each other (Puttonen et al., 2009; Korpela et al.,
2011). In section[I.2] this was presented as a reason to switch from multispectral to spatial
features. However, the claim that spatial features are more robust to these two factors must
be confirmed by experiments. A topic for future work is therefore to include tree-crowns
at more various positions relative to the camera centre. In particular tree-crowns that are
farther away than 60 meter.
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