

Mattias Tjernqvist

June 2017

Introduction

- 3D model our environment
- Light Detection And Ranging (LiDAR)
 - Light
 - Laser scanner
 - Point cloud
- Airborne or ground-based
 - Airborne Laser Scanning (ALS)
 - Terrestrial Laser Scanning (TLS)
 - Static TLS and Mobile TLS

Point cloud of sign and trees at Stadsliden.

<u>Introduction – Static TLS</u>

- Commonly referred to as simply TLS
- Accurate
- Cumbersome!

Photo courtesy of Martin Hämmerle et al.

Photo courtesy of *Swedish University of Agricultural Sciences*.

Photo courtesy of *Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology*.

Introduction – Mobile TLS

 Commonly referred to as Mobile Laser Scanning (MLS)

Photo courtesy of *REIGL* Laser Measurement Systems.

Photo courtesy of *Johan Holmgren*.

Photo courtesy of *REIGL* Laser Measurement Systems.

- Local coordinate system \rightarrow world coordinate system $(x, y, z) \rightarrow (lat, lon, alt)$
- Global Navigation Satellite System (GNSS) (e.g. GPS)
 - Works well in large, open areas. Not so well otherwise...
- In forests:
 - Multipathing and absorption
 - Varying signal quality
 - Varying position estimate quality
- GNSS positioning harder for MLS compared to TLS...

What do you do?

Include other measurement instruments!

- Most common measurement instruments:
 - GNSS
 - Laser scanner
 - Inertial Navigation System (INS)
 - Camera
 - Other...
- Accumulation of error Drift
- The idea: The measurement instruments can support each other
- Sensor fusion
 - Post-processing
 - Real-time

INS used in Concorde. Photo courtesy of *Ramos Christophe*.

Stereo cameras. Photo courtesy of *FLIR Integrated Imaging Solutions*.

<u>Introduction – Focus of this thesis</u>

- Assembly and analysis of a backpack-based MLS system to be used in **forests**.
 - INS
 - GNSS
 - Laser scanner
- Post-process the data with the *Dynamic Calibration* algorithm
 - Expand and improve
- The MLS data was compared to TLS and manual caliper data sets
 - Diameter at breast height (DBH)
 - Root mean square error (RMSE)
 - Bias

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (x_i - x_{ri})^2}{n}}$$

$$Bias = \frac{1}{n} \sum_{i=1}^{n} (x_i - x_{ri})$$

 x_i : *i*th estimation

 x_{ri} : *i*th reference value

 $\overline{x_r}$: average reference value

n: total number of estimations

Theory

- Effects of drift & georeferencing
 - Multiple tree copies
 - Multiple ground layers

Top view

<u>Theory – The dynamic calibration algorithm</u>

- Series of Graphical User Interfaces (GUI:s) written in MATLAB
- Developed by Michael Tulldahl et al. at Totalförsvarets forskningsinstitut (FOI)
- Uses previous data to correct

MLS backpack system

- Instruments used:
 - Velodyne VLP-16 (laser scanner)
 - NovAtel GPS-702-GG (GNSS Receiver) -
 - NovAtel SPAN IGM-S1 (INS) —

Photos courtesy of NovAtel and Velodyne LiDAR.

Photo courtesy of Johan Holmgren.

Contributions to the dynamic calibration

- Adapted
- Expanded
 - Vertical point cloud correction
 - Other...
- Tested and bug fixed...

Survey Stadsliden

- Stadsliden, 2017-03-30
- Total survey duration: 12 minutes
- Area of interest: 40 m diameter
 - TLS data set: same size as MLS
 - Caliper data set: 24 m diameter

Photo courtesy of *Johan Holmgren*.

Post-processing... Please wait

Results and Discussion

Multiple trees & ground correction

- Tree stems before and after (in a small region)
- Successful vertical translation

Multiple trees & ground correction

- Ground layer before and after
- Successful vertical translation

Co-registration - Comparison

	MLS & TLS	MLS & caliper	TLS & caliper
DBH RMSE	27.00 mm	16.95 mm	10.69 mm
DBH Bias	-9.33 mm	-10.58 mm	-0.97 mm

Other forest studies:

- TLS study by Olofsson & Holmgren:
 - TLS compared to caliper
 - DBH RMSE $\approx 10 \text{ mm}$
 - DBH Bias $\approx 0.6 \text{ mm}$
- Backpack MLS study by Liang *et al.*:
 - MLS compared to TLS
 - DBH RMSE = 50.6 mm
 - DBH Bias = -11.1 mm

Conclusions and future work

- Much potential to be used in the future
- Future work:
 - More forest tests (e.g. varying forest properties, different walking patterns)
 - Expand and test the dynamic calibration further
- Autonomous harvesters
- Other applications such as
 - Self-driving cars/robotics
 - ...

Summary

- The dynamic calibration successfully translates in the vertical direction
- Good DBH RMSE and bias
- Much potential to be used in the future
- Future work:
 - More forest tests (e.g. varying forest properties, different walking patterns)
 - Expand and test the dynamic calibration further

